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We derive a stochastic optimization algorithm for mean field variational inference, which we
call online variational inference. Our algorithm approximates the posterior distribution of
a probabilistic model with hidden variables, and can handle large (or even streaming) data
sets of observations.

Let x = x1., be n observations, 8 be global hidden variables, and z = z1., be n local hidden
variables. We assume that the joint distribution of the hidden variables and observations is

p(B,z1n,x10) = p(Bla) [ | p(zi | Pp(i | 2i, ), (1)
i=1

where a are fixed hyperparameters. In this model, the global variables 8 can govern the
distributions of any of the other variables. The local variables z; only govern the distri-
butions of their respective observations x;. Figure 1 illustrates this model. Our goal is to
approximate the posterior p(f,z|x).

The distinction between local and global variables will be important for us to develop online
inference. In Bayesian statistics, for example, think of § as parameters with a prior and
Z1., as hidden variables which are individual to each observation. In a Bayesian mixture of
Gaussians the global variables § are the mixture components and mixture proportions; the
local variables z; are the mixture assignments for each data point.

We make the assumption of conditional conjugacy, which means that the model satisfies
two properties. The first property is that each hidden variable’s factor in Equation 2 is in
an exponential family,
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Figure 1: A graphical model with observations xi.,, local hidden variables z1., and global
hidden variables B. The distribution of each observation x; only depends on its correspond-
ing local variable z; and the global variables .

where we are overloading the notation for sufficient statistics #(-) and log normalizer a(-).
(These are likely different for the two families.) The second property is that each hidden
variable, conditioned on all the other variables, is in the same family as the factor,

p(Blz,x) h(B)exping(z,x) " t(B) — a(ny(z,x))} (4)
p(zi1B,x) = h(z)exping(B,x) t(z:)—am(B,x;))}. (5)

In these conditionals, the natural parameters are functions of the conditioning variables.
For the local variables, the conditional exponential family for z; is only a function of the
global variables f and the ith data point. This follows from the factorization of the joint
distribution in Equation 2.

Conditional conjugacy holds in many useful statistical models, including latent Dirichlet
allocation, hierarchical Dirichlet processes, switching Kalman filters, hierarchical HMMs,
Bayesian mixture models, factorial models, and the probabilistic forms of various matrix
factorization models. It is the principal assumption made in many automated inference
engines, such as VIBES (Bishop et al., 2003; Winn and Bishop, 2005).

The evidence lower bound. In variational inference we optimize the evidence lower
bound (ELBO), which can be derived with Jensen’s inequality,
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This bound uses a family of distributions over the hidden variables q(f,z). In variational
inference, we restrict g to be in a tractable family, i.e., where the expectations can be taken,
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and we try find the member that optimizes the bound. This is equivalent to finding the
member of the family that is closest in KL divergence to the posterior of interest (Jordan
et al., 1999; Wainwright and Jordan, 2008).

The mean-field variational family. We specify the mean-field family for q(S,2). In this
family, each hidden variable is assumed independent and governed by its own variational
parameter

n

q(B,2)=q(BIV [ ] qzilpy). (11)

i=1
The parameters A are the global variational parameters; the parameters ¢ are the local
variational parameters. The objective is now a function of the variational parameters.

Note that this family is less limiting than it might seem. Groups of hidden variables can be
considered as a single “variable,” allowing for various dependencies, such as time-series or
spatial structure in the global variables. However, the individual groups of hidden variables
are assumed to be fully factored.

The mean-field assumption will lead to many computational conveniences. At the outset,
the second term of the objective in Equation 9 decomposes,

n

Ellogq(f,2)]1=Eallogg(BIM]1+ Y_Eg [logq(Z;|$)], (12)
=1

where Ey, denotes an expectation with respect to q(z; |¢;) and similarly for E,.

The gradient of the ELBO. Our goal is to optimize the objective with respect to the
variational parameters. We begin by examining the gradient.

We take the derivative of £ with respect to each variational parameter. Consider the pa-
rameter for the variational distribution of g q(f|A). As a function of A, we can rewrite the
objective as

ZLA) =Ellogp(B1Z1.n,%)]1—Ellog g(B)]+ const. (13)

To see this, consider the two terms of the objective. For the entropy term (the second term
of Equation 9), only E[logq(B)] depends on A; the other terms are absorbed in the constant.
For the expected log of the joint (the first term of Equation 9), we use the chain rule

Ellogp(B,Z,x)] = Ellog p(Z,x)]+ Ellog p(81 Z,x)]. (14)

The term E[log p(Z,x)] is absorbed in the constant. It does not depend on g(B|A) because it
is an expectation over the other variables and, in the mean-field family, 8 is independent of
all the other variables. This completes our derivation of Equation 13.

Before we can compute the gradient, we must specify the form of each component of the
factored variational family. We now specify each component to be in the same exponential



family as its corresponding conditional, and that each variational parameter is its natural
parameter,

g(BIA) = h(B)exp{A"t(B)—a(L)} (15)
qzil¢p;) = h(Zi)eXp{cbiTt(zi)—a(cbi)}- (16)

Again, we overload the sufficient statistics and log normalizers. Assuming that these expo-
nential families are the same as their corresponding conditionals means that #(-) and a(-) in
Equation 15 are the same functions as #(-) and a(:) in Equation 4. Symmetrically, #(-) and
a(:) in Equation 16 are the same as in Equation 5.

With these assumptions we can obtain the final expression for the ELBO as a function of A,
the variational parameter of the global hidden variable S,

£\ =Eln(z, )] a'(B) — ATa' (1) + a(1) + const, (17)

where we used a'(1) = E;[]. Note we have now absorbed E[a(z,x)] into the constant. It
does not depend on A.

With the ELBO thus simplified, the gradient of £ with respect to A is
V& = Via(/l)(Ed,[n(Z,x)] - ). (18)

The derivative for each local variable’s variational parameter ¢; is nearly identical. The
difference is that the natural parameter of the conditional distribution only depends on the
global variables § and the ith data point x;,

Vo, L = Vi alp)Erln(B,x)] - ). (19)

Coordinate ascent variational inference. In most applications of mean-field varia-
tional inference, optimization proceeds by coordinate ascent.

Returning to the global variational parameter A, its derivative equals zero when
A =EyIn(Z,x)]. (20)

Updating A with this equation, holding all the other variational parameters fixed, optimizes
the ELBO for A. Notice the mean-field assumption is critical. The term Ey4[n(Z,x)] does not
depend on A because it is an expectation of a function of the other random variables, and
the mean-field assumption asserts them to be independent of S.

The derivative with respect to the local variational parameter ¢; equals zero when
¢i = Ealn(B,x;)]. (21)

Mirroring the global case, notice that this expectation is only a function of the global varia-
tional parameters A.



1: Initialize A© randomly.
2: repeat

for each data point do
4 Update the local variational parameters, (bét) =E e-vlne(B,x:)].
5: end for
6
7

@

Update the global variational parameters, A0 = E¢(t) [Ng(Z1:n,%1:0)].
: until the ELBO converges

Figure 2: Coordinate ascent mean-field variational inference.

These updates form the coordinate ascent variational inference algorithm (see Figure 2).
This algorithm is guaranteed to find a local optimum of the ELBO. It is the “classical” vari-
ational Bayes algorithm, used in many settings.

Notice that steps 3 and 4 are trivially parallelizable using a map-reduce structure. The
data can be distributed across many machines and the local variational updates can be
implemented in parallel. These results can then be aggregated in step 6 to find the new
global variational parameters.

However, steps 3 and 4 also reveal an inefficiency in the algorithm. The algorithm begins
by initializing A randomly, where the first value of 1 does not reflect any regularity in the
data. However, before completing even one iteration we must analyze every data point in
step 4 using these initial (random) values. This is wasteful, especially if we expect that we
can learn something about the global variational parameters from only a subset of the data.
Further, if the data are “infinite”, i.e., if they represent a data source where information
arrives in a constant stream, then this algorithm can never complete even one iteration.

We will see that stochastic optimization of the variational objective function solves this
problem. With stochastic optimization we can handle massive and streaming data sets,
making progress immediately with the global variational parameters.

The efficiency of our stochastic optimization algorithm hinges on using the natural gradient
of the variational objective. We next discuss natural gradients in general, and their role in
mean-field variational inference.

The natural gradient of the ELBO. Amari (1998) discusses the natural gradient for
optimization, where the natural gradient uses a Riemannian metric to better find the di-

rection of steepest descent. In this section we describe Riemannian metrics for probability
distributions and the natural gradient of the ELBO.

Consider p-vector parameters A and A+ dA. The squared length of dA, in Euclidean space,
is simply |dA|? = Zf _,(d 1:)?. However, for many kinds of parameters Euclidean space is not



appropriate. In general the squared length is

A2 =) g;{(DdA;dA;. (22)
i

The matrix G = (g;;) is a Riemannian metric. It depends (in general) on the parameter A.

Intuitively, the Riemannian metric accounts for how Euclidean distance might not be appro-
priate for the space by stretching and shrinking the length in Equation 22. In variational
inference we focus on probability distributions, where A is the variational parameter. In this
setting, we might consider the “length” between A and A+ d A as the change in symmetrized
KL divergence between the corresponding distributions. For some families of distributions,
a large change in the parameter might lead to a small change in KL divergence; in this case,
Equation 22 would reveal that |dA|2 is smaller than it would be in Euclidean space. Simi-
larly, a small change might lead to a large change in KL divergence; in this case, Equation 22
would reveal that |dA|? is larger than it would be in Euclidean space.

A Riemannian metric for the parameter of a probability distribution is the Fisher informa-
tion (Amari, 1982; Kullback and Leibler, 1951),

G(A) =E[(Valogp(BI M)V, logp(BI1A)]. (23)

We can further simplify when q(f|A) is in the exponential family (Equation 15). In that
setting, the metric is the second derivative of the log normalizer,

G(\) = Via(h). (24)

When optimizing an objective function—as we are in variational inference—the Riemannian
metric is used to compute the natural gradient. Specifically, we obtain the natural gradient
by premultiplying the usual gradient by the inverse of a Riemannian metric. Amari (1998)
showed that the natural gradient is the steepest descent direction.

Returning to variational inference, consider a global variational parameter A. The gradient
is in Equation 18. Since this is a parameter to a probability distribution, a Riemannian
metric is V/zla()l), and note this is the first term in Equation 18. Thus, when we premultiply
the gradient by the inverse of the metric we obtain a simple natural gradient,

ViZ =Eyn(Z,x)]- . (25)

An analogous computation goes through for the local variational parameters. Researchers
have used the natural gradient in variational inference for nonlinear state space mod-
els (Honkela et al., 2008) and Bayesian mixtures (Sato, 2001).!

The natural gradient of the ELBO opens the door to efficient gradient-based algorithms for
variational inference. It is easier to compute than the classical gradient because there is

LOur work here—using the natural gradient in a stochastic optimization algorithm—is closest to Sato
(2001), though we develop the algorithm via a different path and Sato (2001) does not address local varia-
tional parameters.



no need to premultiply by the Fisher information matrix, which can be a limiting factor for
variational parameters with many components. (In the subsequent sections we will look
at parameters with tens of thousands of components.) Note that the classical coordinate
ascent algorithm of Figure 2 is not gradient-based; iteratively optimizing with respect to
each parameter does not require computing the Fisher information because it directly zeros
the second term of Equation 18.

Stochastic optimization with the natural gradient. Stochastic gradient ascent opti-
mizes an objective function by following noisy estimates of the gradient with a decreasing
step size. In their seminal paper from 1951, Robbins and Monro showed that, under cer-
tain conditions, stochastic optimization will converge to the true optimum (or, in our case,
a local optimum). Noisy estimates of a gradient are often cheaper to obtain than the true
gradient, and following noisy estimates of the gradient tends to find better local optima in
complex objective functions. See Spall (2003) for a good overview of stochastic optimization.
See Bottou (2003) for an overview of its role in machine learning.

We first review the ideas behind stochastic optimization. Suppose we are trying to optimize
the objective f(1) and we can sample a random variable G(A) that has expectation equal to
the derivative, E[G(A1)] = f'(1). Stochastic optimization iterates an estimate of A with

A=A 468,57, (26)

where g; are independent draws of the noisy gradient G(1). If the sequence of step sizes
satisfies

D& = o0 @7
Yel < oo (28)

then A! will converge to the optimal A* (if f is convex) or a local optimum of f (if f is not
convex).

Stochastic variational inference uses stochastic gradient ascent to optimize the ELBO with
respect to the global variational parameters. We obtain noisy estimates of the gradient by
subsampling the data. This leads to large computational gains because of the simple form
of the natural gradient in Equation 25.

The objective function is the ELBO in Equation 9. We decompose it using the grouping of
the variables (and corresponding variational parameters) into local and global variables,

n

£ =Ellogp(B)1-Ellogq(B)] +| ) Ellog p(z; | B) + Ellog p(x; | z;, )] - Ellogg(z)]|.  (29)
i=1

Consider a uniform random variable over the indices of the data set, I ~ Unif(1,...,n). De-
fine £; to be the following (random) function of the variational parameters,

<1 =Ellogp(B)]1-Ellogq(B)l+n (E[logp(zI | B)+Ellogp(xs |z, B)]— E[logq(zj)]) . (30)
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The expectation of #; is equal to the ELBO in Equation 29. Therefore, the natural gradient
of £ with respect to each global variational parameter A; is a noisy estimate of the natural
gradient of the variational objective. This process—sampling a data point and then comput-
ing the natural gradient of £;—will provide the noisy gradients needed to use stochastic
optimimization in variational inference.

We now compute the noisy gradient. Suppose we have sampled the ith data point. Notice
that Equation 30 is equivalent to the full ELBO of Equation 29 where the ith data point
is observed n times. This means that we can find the natural gradient in Equation 25,
computing E[n(f_;,z,x)] for n replicates of z; and x;.

To proceed, we need to develop the conditional distribution p(f|z,x) in more detail. The
conjugacy assumptions of Equations (1)—(4) determine its form. These assumptions mean
that the conditional distribution of each local variable and observation given the global
variable is

p(zi,x;1 B) = exp{f' f(zi,x:)—a(B)}. (31)

Because we assume that all pairs form conjugate pairs, this means that the prior distribu-
tion of the global variables f has sufficient statistics ¢(8) = (8,—a(f)). Denote the natural
parameter a = (a1, a2). (Note that @1 might be a vector, but a9 is a scalar.)

The conditional distribution of f is
p(Blx,2) x exp {aTt(,B) + (Z?:l BT f(zi,x;)— a(ﬁ))} . (32)
This is in the same exponential family as the prior on f and has natural parameter
n(z,x) = (a1 + X}, f(zi,xi),az +n). (33)
This is an application of the Bayesian theory around conjucacy (Bernardo and Smith, 1994).
With this form in hand, we compute the full natural gradient of Equation 25,
ViZ = (a1 + X" Eglf(Z;i,x)], as +n) — A. (34)

Finally, when the ELBO contains just one data point that is replicated n times, the (noisy)
natural gradient is
V& =(a1+nEylf(Z;,x)],az +n)—A. (35)

This reveals a computational advantage to using noisy gradients. The expectation in Equa-
tion 34 uses the local variational parameters for the whole data set. In the noisy natural
gradient of Equation 35, we need only consider the local parameter for one data point ¢; to
take a step in the (expected) right direction.

Define 1,(z;,x;) to be the conditional natural parameter for the global variable  given a
data set of n replicates of x;,

Nn(zi,x;) = (a1 +nf(zi,x;)],as +n). (36)
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. Initialize A9 randomly.

: Set the step-size schedule €; appropriately.

repeat
Sample a data point x; uniformly from the data set.
Compute its local variational paramater,

g W

¢ =E e-oln(B,x:)].
6: Compute “fake” global parameters as though x; is replicated n times,

A =Eglnn(Zs,x0)].

1

Update the current estimate of the global variational parameters,
AD =1 —epA"V 1A

8: until forever

Figure 3: Stochastic variational inference.

Using the Robbins-Monro algorithm, we update the global variational parameter with

A= AY e (B [nazr,xp)] - AEY) (37)
(1-e)A" Y 4 e,Eln, (21, x1)]. (38)

Figure 3 presents the full algorithm.

This algorithm is elegant. At each iteration, we have a current estimate of the global varia-
tional parameter A~1). We sample a single data point from our data set. We compute the
optimal global variational parameter as though we observed that data point n times. Fi-
nally, we set the new estimate of the global variational parameter to be a weighted average
of the previous estimate and the single-data-point optimal. If €; satisfies the conditions of
Robbins and Monro (1951) then this will converge to a local optimum of the ELBO.
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