
COS 597A, Fall 2011 
Solutions to Problem Set 2 

 
 
 
1.   

Item Size  Color  Finish 
table lg white antique 
table lg white glossy 
table sm white glossy 
table lg red glossy 
table sm red glossy 
chair lg  white antique 
chair lg white glossy 

Relation 
R 

chair lg red glossy 
 
 
 
 
 
 
    
 
 
 
 
 

Item Size  Color  Finish 
table lg white antique 
table lg white glossy 
table lg red glossy 
chair lg  white antique 
chair lg white glossy 

Relation 
(R÷Q) X Q 

chair lg red glossy 
 
 
 
(table, sm, white, glossy) is not in (R÷Q) X Q. 
 
 
2.  
Part a.  
{a} and {b, c} are candidate keys for R − Q. {b} is a foreign key referencing X.x. 
 

Color Finish 
white antique 
white glossy 

Relation 
Q 

red glossy 

Item Size 
table lg 

Relation 
R÷Q 

chair lg 



Part b.  
{a} is a candidate key for R÷T and {b} is a foreign key referencing X.x.  Division is defined if T 
is the empty set.   However it is interesting to note that if we require T to be not empty to 
perform division, then we can conclude {b} is a candidate key for R÷T.  To see this, suppose 
{b} is not a candidate key for R÷T.  Then, for some value b1 in B and distinct values a1 and a2 
in A, one can have (a1, b1) and (a2, b1) both in R÷T. But then by the definition of the division 
operation in relational algebry,   for any tuple (c1, d1) in T, tuples (a1,b1,c1,d1) and 
(a2,b1,c1,d1) must be in R.  However {b, c} is a candidate key in R, which  means a1and a2 
cannot be distinct (there can be only one tuple in R with a given pair of values for b and c.  
Hence we derive a contradiction if we assume {b} is not a candiate key for R÷T. 
 
 
3. i   πname(σco_name=’Microsoft’ ∧ salary ≤ 30000 works ) 
3.ii    πname,co_name(σ city=’Trenton ‘∧ salary>1000000 (employee  works)) 
3.iii   πco_name (company)  -  πco_name (σ city=’Princeton’ (company)) 
3.iv    company ÷ (πcity(σ co name=’Fred’s Pizza Co.’ (company)) 
3.v    employee    ( 
        (   π name, name2  
              (σsalary > salary2 

                                     ( works X ρname→name2, co_name→co_name2, salary→salary2 (works))  )  ) 
          ÷ 
         (  πname2 
              (σco_name=’IBM’ 

                                   (ρmanager_name → name2 (manages)    ρname → name2 (works  ))   )   ) 
      ) 
 
 
 
 
4.i  {T | ∃S ε works (S.co name = ‘Microsoft’ ∧ S.salary ≤ 30000 ∧  
          T[name] = S[name])} 
 

4.ii  {T | ∃E ε employee  ∃W ε works  
             (E[name] = W[name] ∧ E[city] = ‘Trenton’ ∧ W[salary] > 1000000  

              ∧ T[name] = E[name] ∧ T[co_name] = W[co_name]} 
 
4.iii  {T | ∃C1 ε company(  (T[co_name] = C1[co_name] ) ∧  
                                        (∀C2 ε company (C2[co_name] ≠ C1[co name]  
                                                                                        ∨ C2[city] ≠ ‘Princeton’) )      
) } 



 
 

4.iv  {T | ∃C1 ε company  ( C1[co_name] = T[co_name] ∧  
                        ( ∀C2 ε company ( (C2[co name] = ‘Fred’sPizzaCo.’ )       
                     ⇒ (∃C3 ε company  (C3[co_name] = C1[co_name]  
                                                     ∧ C3[city] = C2[city] )          ) )  ) )     } 
 
4.v  {T | T ε employee ∧  
           ∃W1 ε works (T[name] = W1[name] ∧ 

             ( ∀M ε manages ∀W2 ε works 
                   (    (M[manager_name] = W2[name]∧W2[co name] = ‘IBM’)     

                          ⇒ W1[salary] > W2[salary]    )      )     )                        } 
 
 
 
5.   
Part a 
Two common alternatives: 

i. πattr1πattr2…πattrk(rel1X rel2X … X relk) 
ii. πattr1(rel1) X πattr2(rel2)X … X πattrk(relk) 

 
 
In alternative i, the cross-product establishes the existence of the tuples of rel1 through relk, 
giving all possible choices of combinations of tuples, analogous to the “∃R1 …∃Rk(R1ε rel1 

∧… ∧ Rkε relk” allowing an arbitrary choice of k tuples, one from each reli.  The projection 
chooses the attributes of the resulting tuples. 
 
In alternative ii, the role of projection in capturing ∃is more obvious: πattri(reli) says we are 
projecting away unneeded attributes of a tuple that exists in reli. 
 
Part b 
Let rel1 have attributes a1 through ap and rel2 have attributes b1 through bp.  Then the equivalent 
tupe relational calculus query for rel1Xrel2 is 
 
{T | ∃R1∃R2(R1ε rel1∧R2ε rel2∧T[attr1]=R1[a1]∧T[attr2]=R1[a2] ∧⋯ 

∧T[attrp]=R1[ap]∧T[attrp+1]=R2[b1]∧T[attrp+2]=R2[b2]∧⋯∧T[attrp+q]=R2[bq]} 
 
 


