COS 597A, Fall 2011 Solutions to Problem Set 2

1.

Relation	Item	Size	Color	Finish
R	table	lg	white	antique
	table	lg	white	glossy
	table	sm	white	glossy
	table	lg	red	glossy
	table	sm	red	glossy
	chair	lg	white	antique
	chair	lg	white	glossy
	chair	lg	red	glossy

Relation	Color	Finish
Q	white	antique
	white	glossy
	red	glossy

Relation	Item	Size	
R÷Q	table	lg	
	chair	lg	

Relation	Item	Size	Color	Finish
(R÷Q) X Q	table	lg	white	antique
	table	lg	white	glossy
	table	lg	red	glossy
	chair	lg	white	antique
	chair	lg	white	glossy
	chair	lg	red	glossy

(table, sm, white, glossy) is not in $(R \div Q) X Q$.

2.

Part a.

 $\{a\}$ and $\{b, c\}$ are candidate keys for R - Q. $\{b\}$ is a foreign key referencing X.x.

Part b.

{a} is a candidate key for $R \div T$ and {b} is a foreign key referencing X.x. Division is defined if T is the empty set. However it is interesting to note that if we require T to be not empty to perform division, then we can conclude {b} is a candidate key for $R \div T$. To see this, suppose {b} is not a candidate key for $R \div T$. Then, for some value b1 in B and distinct values a1 and a2 in A, one can have (a1, b1) and (a2, b1) both in $R \div T$. But then by the definition of the division operation in relational algebry, for any tuple (c1, d1) in T, tuples (a1,b1,c1,d1) and (a2,b1,c1,d1) must be in R. However {b, c} is a candidate key in R, which means a1 and a2 cannot be distinct (there can be only one tuple in R with a given pair of values for b and c. Hence we derive a contradiction if we assume {b} is not a candidate key for $R \div T$.

```
3. i \pi_{\text{name}}(\sigma_{\text{co_name}='\text{Microsoft'} \land \text{salary} \le 3000} \text{ works})
```

3.ii $\pi_{\text{name,co name}}(\sigma_{\text{city}=\text{'Trenton '}_{\land} \text{ salary}>1000000} (\text{employee} \triangleright \triangleleft \text{ works}))$

```
3.iii \pi_{co name} (company) - \pi_{co name} (\sigma_{city='Princeton'} (company))
```

3.iv company \div ($\pi_{city}(\sigma_{co name='Fred's Pizza Co.'}$ (company))

3.v employee $\triangleright \triangleleft$ (

$(\pi_{name, name2})$

 $(\sigma_{\text{salary} > \text{salary2}})$

(works X $\rho_{name \rightarrow name2, \ co_name \rightarrow co_name2, \ salary \rightarrow salary2}$ (works))))

÷

```
(\pi_{name2})
```

 $(\sigma_{co_name='IBM'})$

```
(\rho_{\text{manager_name} \rightarrow \text{name2}} (\text{manages}) \bowtie \rho_{\text{name} \rightarrow \text{name2}} (\text{works})))))
```

```
)
```

4.i {T | **J**S ε works (S.co name = 'Microsoft' ∧ S.salary ≤ 30000 ∧ T[name] = S[name])}

```
4.ii {T | ∃E ε employee ∃W ε works
(E[name] = W[name] ∧ E[city] = 'Trenton' ∧ W[salary] > 1000000
∧ T[name] = E[name] ∧ T[co_name] = W[co_name]}
```

4.iii {T |
$$\exists C_1 \varepsilon$$
 company((T[co_name] = C_1[co_name])
 ($\forall C_2 \varepsilon$ company (C_2[co_name] $\neq C_1$ [co name]
 v C_2[city] \neq 'Princeton'))

)}

4.iv {T |
$$\exists C_1 \varepsilon$$
 company ($C_1[co_name] = T[co_name] \land$
($\forall C_2 \varepsilon$ company (($C_2[co name] = `Fred`sPizzaCo.')$
 $\Rightarrow (\exists C_3 \varepsilon$ company ($C_3[co_name] = C_1[co_name]$
 $\land C_3[city] = C_2[city]$)))))) }

$$\Rightarrow W_1[salary] > W_2[salary])))$$

}

5.

Part a Two common alternatives:

- i. $\pi_{\text{attr1}}\pi_{\text{attr2}}\dots\pi_{\text{attrk}}(\text{rel}_1 X \text{ rel}_2 X \dots X \text{ rel}_k)$
- ii. $\pi_{\text{attr1}}(\text{rel}_1) \times \pi_{\text{attr2}}(\text{rel}_2) \times \dots \times \pi_{\text{attrk}}(\text{rel}_k)$

In alternative i, the cross-product establishes the existence of the tuples of rel₁ through rel_k, giving all possible choices of combinations of tuples, analogous to the " $\exists R_1 \ldots \exists R_k(R_1 \epsilon rel_1 \land \ldots \land R_k \epsilon rel_k$ " allowing an arbitrary choice of k tuples, one from each rel_i. The projection chooses the attributes of the resulting tuples.

In alternative ii, the role of projection in capturing \exists is more obvious: $\pi_{attri}(rel_i)$ says we are projecting away unneeded attributes of a tuple that exists in rel_i.

Part b

Let rel_1 have attributes a_1 through a_p and rel_2 have attributes b_1 through b_p . Then the equivalent tupe relational calculus query for $rel_1 Xrel_2$ is

 $\begin{array}{l} \{T \mid \exists R_1 \exists R_2(R_1 \epsilon \ \textbf{rel}_1 \land R_2 \epsilon \ \textbf{rel}_2 \land T[attr_1] = R_1[a_1] \land T[attr_2] = R_1[a_2] \land \cdots \land T[attr_p] = R_1[a_p] \land T[attr_{p+1}] = R_2[b_1] \land T[attr_{p+2}] = R_2[b_2] \land \cdots \land T[attr_{p+q}] = R_2[b_q] \end{array}$