COS 597A, Fall 2011
 Solutions to Problem Set 2

1.

Relation	Item	Size	Color	Finish
	Rable	\lg	white	antique
	table	\lg	white	glossy
	table	sm	white	glossy
	table	\lg	red	glossy
	table	sm	red	glossy
	chair	\lg	white	antique
	chair	\lg	white	glossy
	chair	\lg	red	glossy

Relation	Color	Finish
	white	antique
	white	glossy
	red	glossy

Relation	Item	Size
$\mathbf{R} \div \mathbf{Q}$	table	\lg
	chair	\lg

Relation	Item	Size	Color	Finish
$(\mathbf{R} \div \mathbf{Q}) \times \mathbf{Q}$	table	\lg	white	antique
	table	\lg	white	glossy
	table	\lg	red	glossy
	chair	\lg	white	antique
	chair	\lg	white	glossy
	chair	\lg	red	glossy

(table, sm, white, glossy) is not in $(\mathrm{R} \div \mathrm{Q}) \mathrm{X} \mathrm{Q}$.
2.

Part a.
$\{\mathrm{a}\}$ and $\{\mathrm{b}, \mathrm{c}\}$ are candidate keys for $\mathrm{R}-\mathrm{Q} .\{\mathrm{b}\}$ is a foreign key referencing X.x.

Part b.

$\{a\}$ is a candidate key for $\mathrm{R} \div \mathrm{T}$ and $\{b\}$ is a foreign key referencing X.x. Division is defined if T is the empty set. However it is interesting to note that if we require T to be not empty to perform division, then we can conclude $\{b\}$ is a candidate key for $R \div T$. To see this, suppose $\{b\}$ is not a candidate key for $R \div T$. Then, for some value $b 1$ in B and distinct values a1 and $a 2$ in A , one can have $(\mathrm{a} 1, \mathrm{~b} 1)$ and $(\mathrm{a} 2, \mathrm{~b} 1)$ both in $\mathrm{R} \div \mathrm{T}$. But then by the definition of the division operation in relational algebry, for any tuple ($\mathrm{c} 1, \mathrm{~d} 1$) in T , tuples ($\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1, \mathrm{~d} 1$) and ($\mathrm{a} 2, \mathrm{~b} 1, \mathrm{c} 1, \mathrm{~d} 1$) must be in R . However $\{\mathrm{b}, \mathrm{c}\}$ is a candidate key in R , which means aland a 2 cannot be distinct (there can be only one tuple in R with a given pair of values for b and c.
Hence we derive a contradiction if we assume $\{b\}$ is not a candiate key for $R \div T$.
3. i $\pi_{\text {name }}\left(\sigma_{\text {co_name }}={ }^{\prime}\right.$ Microsoft' $^{\wedge}$ salary ≤ 30000 Works $)$
3.ii $\pi_{\text {name,co_name }}\left(\sigma_{\text {city }=’ \text { Trenton }}{ }^{\wedge} \wedge\right.$ salary $>1000000($ employee $\triangleright \triangleleft$ works $)$)
3.iii $\pi_{\text {co_name }}($ company $)-\pi_{\text {co_name }}\left(\sigma_{\text {city }}\right.$ 'Princeton' $($ company $\left.)\right)$
3.iv company $\div\left(\pi_{\text {city }}\left(\sigma_{\text {co name }}{ }^{\prime}\right.\right.$ Fred's Pizza Co.' $($ company $\left.)\right)$
3.v employee $\triangleright \triangleleft$ (
($\pi_{\text {name, name2 }}$
($\sigma_{\text {salary }}$ > salary2
(works $X \rho_{\text {name } \rightarrow \text { name2, co_name } \rightarrow \text { co_name2, salary } \rightarrow \text { salary2 }}($ works))))

$$
\div
$$

$$
\left(\pi_{\text {name } 2}\right.
$$

($\sigma_{\text {co_name }}{ }^{\prime}$ IBM ${ }^{\prime}$
$\left(\rho_{\text {manager_name } \rightarrow \text { name2 }}\right.$ (manages) $\triangleright \triangleleft \rho_{\text {name } \rightarrow \text { name2 }}($ works $\left.)\right)$)
)
4.i $\{T \mid \exists S \varepsilon$ works (S.co name $=$ 'Microsoft' \wedge S.salary $\leq 30000 \wedge$ $\mathrm{T}[$ name $]=\mathrm{S}[$ name $])\}$
4.ii $\{\mathrm{T} \mid \exists \mathrm{E} \varepsilon$ employee $\exists \mathrm{W} \varepsilon$ works

$$
(E[\text { name }]=W[\text { name }] \wedge E[\text { city }]=\text { 'Trenton' } \wedge W[\text { salary }]>1000000
$$

$$
\wedge \mathrm{T}[\text { name }]=\mathrm{E}[\text { name }] \wedge \mathrm{T}[\text { co_name }]=\mathrm{W}[\text { co_name }]\}
$$

4.iii $\left\{\mathrm{T} \mid \exists \mathrm{C}_{1} \varepsilon\right.$ company($\left(\mathrm{T}[\right.$ co_name $]=\mathrm{C}_{1}[$ co_name $\left.]\right) \wedge$

$$
\begin{aligned}
& \left(\forall \mathrm { C } _ { 2 } \varepsilon \text { company } \left(\mathrm{C}_{2}[\text { co_name }] \neq \mathrm{C}_{1}[\text { co name }]\right.\right. \\
& \left.\left.\vee \mathrm{C}_{2}[\text { city }] \neq \text { 'Princeton' }\right)\right)
\end{aligned}
$$

$$
\text {) \} }
$$

4.iv $\left\{\mathrm{T} \mid \exists \mathrm{C}_{1} \varepsilon\right.$ company $\left(\mathrm{C}_{1}\right.$ [co_name] $=\mathrm{T}[$ co_name $] \wedge$

$$
\left.\left.\left.\left.\begin{array}{l}
\left(\forall \mathrm { C } _ { 2 } \varepsilon \text { company } \left(\left(\mathrm{C}_{2}[\text { co name }]=\text { 'Fred’sPizzaCo.' }\right)\right.\right. \\
\Rightarrow\left(\exists \mathrm { C } _ { 3 } \varepsilon \text { company } \left(\mathrm{C}_{3}[\text { co_name }]=\mathrm{C}_{1}[\text { co_name }]\right.\right. \\
\left.\wedge \mathrm{C}_{3}[\text { city }]=\mathrm{C}_{2}[\text { city }]\right)
\end{array}\right)\right)\right)\right), ~ \$
$$

4.v $\{\mathrm{T} \mid \mathrm{T} \varepsilon$ employee \wedge

$$
\exists \mathrm{W}_{1} \varepsilon \text { works }\left(\mathrm{T}[\text { name }]=\mathrm{W}_{1}[\text { name }] \wedge\right.
$$

($\forall \mathrm{M} \varepsilon$ manages $\forall \mathrm{W}_{2} \varepsilon$ works
((M[manager_name] $=\mathrm{W}_{2}$ [name] $\wedge \mathrm{W}_{2}$ [co name] = 'IBM')
$\Rightarrow \mathrm{W}_{1}[$ salary $]>\mathrm{W}_{2}$ [salary])) \}

5.

Part a

Two common alternatives:
i. $\pi_{\text {atrr } 1} \pi_{\text {attr } 2} \ldots \pi_{\text {attrk }}\left(\operatorname{rel}_{1} X \operatorname{rel}_{2} X \ldots X \operatorname{rel}_{k}\right)$
ii. $\pi_{\text {attrl }}\left(\right.$ rel $\left._{1}\right) \times \pi_{\text {attr } 2}\left(\right.$ rel $\left._{2}\right) \mathrm{X} \ldots \mathrm{X} \pi_{\text {attrk }}\left(\mathrm{rel}_{\mathrm{k}}\right)$

In alternative i, the cross-product establishes the existence of the tuples of rel $_{1}$ through rel_{k}, giving all possible choices of combinations of tuples, analogous to the " $\exists \mathrm{R}_{1} \ldots \exists \mathrm{R}_{\mathrm{k}}\left(\mathrm{R}_{1} \varepsilon \operatorname{rel}_{1}\right.$ $\wedge \ldots \wedge \mathrm{R}_{\mathrm{k}} \varepsilon$ rel $_{\mathrm{k}}$ " allowing an arbitrary choice of k tuples, one from each rel ${ }_{\mathrm{i}}$. The projection chooses the attributes of the resulting tuples.

In alternative ii, the role of projection in capturing \exists is more obvious: $\pi_{\text {attri }}\left(\right.$ rel $\left._{\mathrm{i}}\right)$ says we are projecting away unneeded attributes of a tuple that exists in rel_{i}.

Part b
Let rel ${ }_{1}$ have attributes a_{1} through a_{p} and rel $_{2}$ have attributes b_{1} through b_{p}. Then the equivalent tupe relational calculus query for $\mathrm{rel}_{1} \mathrm{Xrel}_{2}$ is

$$
\begin{aligned}
& \left\{\mathrm{T} \mid \exists \mathrm{R}_{1} \exists \mathrm{R}_{2}\left(\mathrm{R}_{1} \varepsilon \operatorname{rel}_{1} \wedge \mathrm{R}_{2} \varepsilon \operatorname{rel}_{2} \wedge \mathrm{~T}\left[\operatorname{attr}_{1}\right]=\mathrm{R}_{1}\left[\mathrm{a}_{1}\right] \wedge \mathrm{T}\left[\operatorname{attr}_{2}\right]=\mathrm{R}_{1}\left[\mathrm{a}_{2}\right] \wedge \cdots\right.\right. \\
& \left.\wedge \mathrm{T}\left[\operatorname{attr}_{\mathrm{p}}\right]=\mathrm{R}_{1}\left[\mathrm{a}_{\mathrm{p}}\right] \wedge \mathrm{T}\left[\operatorname{attr}_{\mathrm{p}+1}\right]=\mathrm{R}_{2}\left[\mathrm{~b}_{1}\right] \wedge \mathrm{T}\left[\operatorname{attr}_{\mathrm{p}+2}\right]=\mathrm{R}_{2}\left[\mathrm{~b}_{2}\right] \wedge \cdots \wedge \mathrm{T}\left[\operatorname{attr}_{\mathrm{p}+\mathrm{q}}\right]=\mathrm{R}_{2}\left[\mathrm{~b}_{\mathrm{q}}\right]\right\}
\end{aligned}
$$

