
COS 597A, Fall 2011
Solutions to Problem Set 2

1.

Item Size Color Finish
table lg white antique
table lg white glossy
table sm white glossy
table lg red glossy
table sm red glossy
chair lg white antique
chair lg white glossy

Relation
R

chair lg red glossy

Item Size Color Finish
table lg white antique
table lg white glossy
table lg red glossy
chair lg white antique
chair lg white glossy

Relation
(R÷Q) X Q

chair lg red glossy

(table, sm, white, glossy) is not in (R÷Q) X Q.

2.
Part a.
{a} and {b, c} are candidate keys for R − Q. {b} is a foreign key referencing X.x.

Color Finish
white antique
white glossy

Relation
Q

red glossy

Item Size
table lg

Relation
R÷Q

chair lg

Part b.
{a} is a candidate key for R÷T and {b} is a foreign key referencing X.x. Division is defined if T
is the empty set. However it is interesting to note that if we require T to be not empty to
perform division, then we can conclude {b} is a candidate key for R÷T. To see this, suppose
{b} is not a candidate key for R÷T. Then, for some value b1 in B and distinct values a1 and a2
in A, one can have (a1, b1) and (a2, b1) both in R÷T. But then by the definition of the division
operation in relational algebry, for any tuple (c1, d1) in T, tuples (a1,b1,c1,d1) and
(a2,b1,c1,d1) must be in R. However {b, c} is a candidate key in R, which means a1and a2
cannot be distinct (there can be only one tuple in R with a given pair of values for b and c.
Hence we derive a contradiction if we assume {b} is not a candiate key for R÷T.

3. i πname(σco_name=’Microsoft’ ∧ salary ≤ 30000 works)
3.ii πname,co_name(σ city=’Trenton ‘∧ salary>1000000 (employee  works))
3.iii πco_name (company) - πco_name (σ city=’Princeton’ (company))
3.iv company ÷ (πcity(σ co name=’Fred’s Pizza Co.’ (company))
3.v employee  (
 (π name, name2
 (σsalary > salary2

 (works X ρname→name2, co_name→co_name2, salary→salary2 (works))))
 ÷
 (πname2
 (σco_name=’IBM’

 (ρmanager_name → name2 (manages)  ρname → name2 (works))))
)

4.i {T | ∃S ε works (S.co name = ‘Microsoft’ ∧ S.salary ≤ 30000 ∧
 T[name] = S[name])}

4.ii {T | ∃E ε employee ∃W ε works
 (E[name] = W[name] ∧ E[city] = ‘Trenton’ ∧ W[salary] > 1000000

 ∧ T[name] = E[name] ∧ T[co_name] = W[co_name]}

4.iii {T | ∃C1 ε company((T[co_name] = C1[co_name]) ∧
 (∀C2 ε company (C2[co_name] ≠ C1[co name]
 ∨ C2[city] ≠ ‘Princeton’))
) }

4.iv {T | ∃C1 ε company (C1[co_name] = T[co_name] ∧
 (∀C2 ε company ((C2[co name] = ‘Fred’sPizzaCo.’)
 ⇒ (∃C3 ε company (C3[co_name] = C1[co_name]
 ∧ C3[city] = C2[city]))))) }

4.v {T | T ε employee ∧
 ∃W1 ε works (T[name] = W1[name] ∧

 (∀M ε manages ∀W2 ε works
 ((M[manager_name] = W2[name]∧W2[co name] = ‘IBM’)

 ⇒ W1[salary] > W2[salary]))) }

5.
Part a
Two common alternatives:

i. πattr1πattr2…πattrk(rel1X rel2X … X relk)
ii. πattr1(rel1) X πattr2(rel2)X … X πattrk(relk)

In alternative i, the cross-product establishes the existence of the tuples of rel1 through relk,
giving all possible choices of combinations of tuples, analogous to the “∃R1 …∃Rk(R1ε rel1

∧… ∧ Rkε relk” allowing an arbitrary choice of k tuples, one from each reli. The projection
chooses the attributes of the resulting tuples.

In alternative ii, the role of projection in capturing ∃is more obvious: πattri(reli) says we are
projecting away unneeded attributes of a tuple that exists in reli.

Part b
Let rel1 have attributes a1 through ap and rel2 have attributes b1 through bp. Then the equivalent
tupe relational calculus query for rel1Xrel2 is

{T | ∃R1∃R2(R1ε rel1∧R2ε rel2∧T[attr1]=R1[a1]∧T[attr2]=R1[a2] ∧⋯

∧T[attrp]=R1[ap]∧T[attrp+1]=R2[b1]∧T[attrp+2]=R2[b2]∧⋯∧T[attrp+q]=R2[bq]}

