COS 597A: Principles of Database and Information Systems

Relational model

Relational model

- > A formal (mathematical) model to represent
 - objects (data/information),
 - relationships between objects
 - Constraints on objects and relationships
 Queries about information

> Well-founded on mathematical principles :

- Precise semantics of constraints and queries
- Can prove equivalence of different ways to express queries

Relational model - practice

- Foundation of most Database
 Management Systems
- SQL language is a programming language to express constructs of formal model

Relational Database Definitions

- 1. A relation is a set of tuples over specified domains
 - R subset of D₁ X D₂ X D₃ X ... D_k (k-ary)
 - Each D_i is a declared domain
 - Domains atomic
 types of programming languages
- 2. A relational database is a set of relations and possibly constraints among the relations

Relational Database: Terminology

Schema for a relation:

1. Relation name

2. Domain (type) of each component i.e. declare D_i s

Equivalent:

Instance of a scheme

- Table

Term "relation" is used to refer to a schema and a particular instance – disambiguate by context

Translating ER model to relational

- Domains \rightarrow domains
- Entity → relation
- Relationship \rightarrow one* or more relations *come back to
- Constraints → constraints BUT
 Not all ER constraints expressible in basic relational model

Relational model is FLAT – no hierarchy!

Our ER Example \rightarrow Relational schema

For entities, get relations:

books: (title, <u>ISBN#,</u> edition, date) *authors*:

(<u>name</u>, gender, <u>birth date</u>, <u>place of birth</u>, date of death) publishers: (<u>name</u>, country, address)

Need declare domains: e.g. title: string

Same defs candidate keys, primary key, superkeys

$\textbf{Our ER Example} \rightarrow \textbf{Relational schema}$

For relationships:

ER published by: (books, publishers, in print) becomes published by: (isbn#, publisher_name, in print) key constraint on entity books in relationship published by → A book has at most one publisher

ER written by: (books, authors) becomes

written by:

(isbn#, author_name, birth date, place of birth)

Our ER Example \rightarrow Relational schema

Because ER key constraint on entity books in relationship published by Can fold relation published by into relation books:

books: (title, <u>ISBN#,</u> edition, date, pub_name, in print)

What if some books not published? i.e. entity *books* not totally participate in relationship *published by*

Our ER Example \rightarrow Relational schema

books:

(title, ISBN#, edition, date, pub_name, in print)

What if some books not published? i.e. entity *books* not totally participate in relationship *published by*

Must allow values of attributes

pub_name and in print to be NUI

Translating ER model to relational

General conclusion:

Relationship \rightarrow one zero or more relations

Translating ER model to relational

- · Get flat set of relations
- But relations are interrelated
 - Bring together primary keys of different relations to build new relation
 Captures ER relationship
- How capture this in relational model?
 Foreign key constraints

Enforcing relational constraints

- · Constraints must be satisfied at all times
- What happens when tuples in relations change?
- Action of changing a relation not part of basic relational model
- Database language implementing model enforces

Enforcement in SQL

- SQL commands changing relations: INSERT, DELETE, UPDATE
- Domain constraints

 Don't allow attribute value not in domain INSERT or UPDATE fails
- "Not null" constraints – Special case of domain constraints

Enforcement in SQL

Candidate key constraints

- Can have other candidate keys declared as well as primary key
- Don't allow 2nd tuple with same key value INSERT or UPDATE fails
- Implicit "not null" for attributes in a key INSERT or UPDATE fails

Enforcement in SQL

Foreign key constraints

- Suppose Y denotes a set of attributes of relation B that reference the primary key of relation A.
 - Don't allow tuple into B if no tuple in A with matching values for Y INSERT or UPDATE fails

Enforcement in SQL

Foreign key constraints continued

- suppose want to remove a tuple in A
- Suppose there is a tuple in B with matching values for Y

Choices (in SQL):

1. Disallow deletion from A DELETE or UPDATE fails

Enforcement in SQL

Choices (in SQL) continued:

- 2. Ripple effect (CASCADE):
 - Remove tuple from A and all tuples from B with matching values for Y
 - DELETE or UPDATE in A causes DELETE in B

3. Substitute value

- Put "null" (if Y not part of candidate key for B) or other default value for Y in B
- DELETE or UPDATE in A causes UPDATE in B

Actions for board example?

Books: (title, ISBN#, edition, date)

PU branches: (br name, librarian, hours)

Copies: (ISBN#, copy#, condition, purchase date, br_name) br_name not null isbn# is a foreign key referencing **books** br_name is a foreign key referencing **PU branches**

What about constraints not expressible in ER model?

- · Value-based constraints?
- General functional constraints?

In relational model:

- Declaring and enforcing these depend on use of database language
- Use query semantics to check