
9/27/11

1

COS 597A:
Principles of

Database and Information Systems

Relational model

Relational model
 A formal (mathematical) model to represent

•  objects (data/information),
•  relationships between objects
•  Constraints on objects and relationships
•  Queries about information

 Well-founded on mathematical principles :
 Precise semantics of constraints and queries
 Can prove equivalence of different ways to express

queries

Relational model - practice

•  Foundation of most Database
Management Systems

•  SQL language is a programming language
to express constructs of formal model

Relational Database Definitions

1.  A relation is a set of tuples over specified
domains

•  R subset of D1 X D2 X D3 X … Dk (k-ary)
•  Each Di is a declared domain
•  Domains atomic

•  types of programming languages

2.  A relational database is a set of relations and
possibly constraints among the relations

Relational Database: Terminology

Schema for a relation:
1.  Relation name
2.  Domain (type) of each component

i.e. declare Di s

Equivalent:
–  Instance of a scheme
–  Table

Term “relation” is used to refer to a schema and a particular
instance – disambiguate by context

Relational Database: More Terminology

Each Di of a schema is referred to as a
 component or attribute or field or column of the schema

Each di of a tuple = (d1, d2, d3, … dk) is referred to as
 component or attribute or field of the tuple

Each tuple of a relation is also referred to as an
element or row of the relation

elements
↓

attributes→

9/27/11

2

Translating ER model to relational

•  Domains → domains
•  Entity → relation
•  Relationship → one* or more relations

* come back to

•  Constraints → constraints BUT
 Not all ER constraints expressible in basic

relational model

Relational model is FLAT – no hierarchy!

Our ER Example → Relational schema

For entities, get relations:

books: (title, ISBN#, edition, date)
authors:

(name, gender, birth date, place of birth, date of death)
publishers: (name, country, address)

Need declare domains:
e.g. title: string

Same defs candidate keys, primary key, superkeys

Our ER Example → Relational schema

For relationships:

ER published by: (books, publishers, in print)
becomes
published by: (isbn#, publisher_name, in print)

key constraint on entity books in relationship published by →
A book has at most one publisher

ER written by: (books, authors)
becomes
written by:

(isbn#, author_name, birth date, place of birth)

Our ER Example → Relational schema

Because ER key constraint on entity books in
relationship published by
Can fold relation published by into relation books:

books:
(title, ISBN#, edition, date, pub_name, in print)

What if some books not published?
i.e. entity books not totally participate in relationship
published by

Our ER Example → Relational schema

books:
(title, ISBN#, edition, date, pub_name, in print)

What if some books not published?
i.e. entity books not totally participate in relationship published by

Must allow values of attributes
pub_name and in print to be null

Translating ER model to relational

General conclusion:
Relationship → one zero or more relations

9/27/11

3

Translating ER model to relational

•  Get flat set of relations
•  But relations are interrelated

– Bring together primary keys of different
relations to build new relation

– Captures ER relationship
•  How capture this in relational model?

Foreign key constraints

Foreign key constraint

•  Specify that a set of attributes in schema
for one relation form a primary key for a
specific other relation
–  “other relation” is referred to or referenced by

first relation

R1: (attrib1, attrib2, attrib3, attrib4, attrib5)

R2: (attrib1, attrib2, attrib3, attrib4)
R1 refers to/references R2

Foreign Keys for Our Example

published by: (isbn#, publisher_name, in print)
isbn# is a foreign key referencing books

Primary key of books understood
Publisher_name is a foreign key referencing
publishers

written by:
(isbn#, author_name, birth date, place of birth)

isbn# is a foreign key referencing books;
(author_name, birth date, place of birth) is a
foreign key referencing authors

Summary of board example:
with Copies as weak entity

Relational model:
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, copy#, condition, br_name)

br_name not null
isbn# is a foreign key referencing Books
br_name is a foreign key referencing PU branches

Because ER key constraints
 PU book folded into Copies
 PU holding folded into Copies

Books

Copies

PU
book PU branches PU

holding

Summary of board example:
with Copies as strong entity

Relational model:
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, call #, copy #, condition, br_name)

br_name not null
ISBN# not null NEW
isbn# is a foreign key referencing Books
br_name is a foreign key referencing PU branches

Because ER key constraints
 PU book folded into Copies
 PU holding folded into Copies

Books

Copies

PU
book PU branches PU

holding

call #

copy #
condition

Summary of board example:
Alternative with Copies as strong entity

Relational model:
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, call #, copy #, condition)

ISBN# not null
isbn# is a foreign key referencing Books

PU holding: (call #, copy #, br_name)
(call #, copy #) is a foreign key referencing Copies
br_name is a foreign key referencing PU branches

Because ER key constraints
 PU book folded into Copies

Books

Copies

PU
book PU branches PU

holding

9/27/11

4

Board example:
Total participation of Copies?

Copies: (ISBN#, call #, copy #, condition, br_name)
br_name not null
ISBN# not null
isbn# is a foreign key referencing Books
br_name is a foreign key referencing PU branches

capture total participation in PU book and PU holding
because PU book, PU holding represented within Copies

versus
PU holding: (call #, copy #, br_name)

(call #, copy #) is a foreign key referencing Copies
br_name is a foreign key referencing PU branches

br_name “not null” would not capture that every (call #, copy
#) value is in a PU holding pair

Board example:
Total participation of PU branches?

Can’t get constraint applied to all PU branch
tuples without being part of PU branch relation

Total participation of PU branches in PU holding
not representable in pure relational definition

Basic Paradigm

Entity k

Entity 2 Entity k-1

R Entity 1

Attribute R_A1 Attribute R_Am …

…
•  Each entity becomes a relation
•  Relationship becomes

R: { (list of attributes forming key of Entity 1 (denote L1),
 list of attributes forming key of Entity 2 (denote L2),
 …
 list of attributes forming key of Entity k (denote Lk),
 Attribute R_A1, …, Attribute R_Am)
 L1 is a foreign key referencing Entity 1,
 …
 Lk is a foreign key referencing Entity k }

Note
primary
key

What about constraints on
relationships?

•  Key constraint:
–  Simplifies key of corresponding relation
–  Allows folding of relation into key entity

•  Total participation constraint:
–  In general, cannot represent in purely relational

definition:
•  Domain specification
•  Keys of relations
•  Foreign keys
•  “not null”s

Constraints have
in

relational definition }

Clarifying null values
and foreign keys

For Basic Paradigm
(binary relationship)

Entity B R Entity A

r1 rm …

•  Each entity becomes a relation with same attributes
•  Relationship becomes

R: { (a1,…, ap, b1, …, bq, r1, …, rm)
 (a1, …, ap) is a foreign key referencing A,
 (b1, …, bq) is a foreign key referencing B }

a1 … … xu x1 ap
b1 … … yv y1 bq

can be no null values among ai and bj in tuple of R
make up R’s primary key

9/27/11

5

When one entity (e.g. Entity A) has key
constraint and fold R into it

• Entity B becomes a relation with same attributes
•  Relationship R becomes part of relation for Entity A:
 A: { (a1,…, ap, x1, …, xu, b1, …, bq, r1, …, rm)

 (b1, …, bq) is a foreign key referencing B }
now need to allow null values for b1 … bq in A

not every entity in A is related to an entity in B

Entity B R Entity A

r1 rm …

a1 … … xu x1 ap
b1 … … yv y1 bq

When have key constraint and total
participation and fold R in

•  Entity B becomes a relation with same attributes
•  Relationship R becomes part of relation for Entity A:
 A: { (a1,…, ap, x1, …, xu, b1, …, bq, r1, …, rm)

 (b1, …, bq) is a foreign key referencing B
 b1 not null, …, bq not null }

now prohibit null values for b1 … bq in A
every entity in A is related to an entity in B

Entity B R Entity A

r1 rm …

a1 … … xu x1 ap
b1 … … yv y1 bq

Enforcing relational constraints

•  Constraints must be satisfied at all times
•  What happens when tuples in relations

change?

•  Action of changing a relation not part of
basic relational model

•  Database language implementing model
enforces

Enforcement in SQL

SQL commands changing relations:
INSERT, DELETE, UPDATE

•  Domain constraints
– Don’t allow attribute value not in domain

INSERT or UPDATE fails

•  “Not null” constraints
– Special case of domain constraints

Enforcement in SQL

•  Candidate key constraints
– Can have other candidate keys declared as

well as primary key
– Don’t allow 2nd tuple with same key value

INSERT or UPDATE fails

–  Implicit “not null” for attributes in a key
INSERT or UPDATE fails

Enforcement in SQL

•  Foreign key constraints
Suppose Y denotes a set of attributes of relation B

that reference the primary key of relation A.

– Don’t allow tuple into B if no tuple in A with
matching values for Y

INSERT or UPDATE fails

9/27/11

6

Enforcement in SQL
Foreign key constraints continued

–  suppose want to remove a tuple in A
–  Suppose there is a tuple in B with matching

values for Y

Choices (in SQL):
1.  Disallow deletion from A

DELETE or UPDATE fails

Enforcement in SQL
Choices (in SQL) continued:

2.  Ripple effect (CASCADE):
–  Remove tuple from A and all tuples from B with

matching values for Y
–  DELETE or UPDATE in A causes DELETE in B

3.  Substitute value
–  Put “null” (if Y not part of candidate key for B) or

other default value for Y in B
–  DELETE or UPDATE in A causes UPDATE in B

Actions for board example?

Books: (title, ISBN#, edition, date)

PU branches: (br_name, librarian, hours)

Copies: (ISBN#, copy#, condition, purchase date, br_name)
br_name not null
isbn# is a foreign key referencing books
br_name is a foreign key referencing PU branches

What about constraints not
expressible in ER model?

•  Value-based constraints?
•  General functional constraints?

In relational model:
•  Declaring and enforcing these depend on

use of database language
•  Use query semantics to check

