9/27/11

COS 597A:
Principles of
Database and Information Systems

Relational model

Relational model

» A formal (mathematical) model to represent
« objects (data/information),
« relationships between objects
« Constraints on objects and relationships
* Queries about information

» Well-founded on mathematical principles :
» Precise semantics of constraints and queries

» Can prove equivalence of different ways to express
queries

Relational model - practice

» Foundation of most Database
Management Systems

+ SQL language is a programming language
to express constructs of formal model

Relational Database Definitions

1. Avrelation is a set of tuples over specified
domains
* R subsetof D; XD, XD; X ... D, (k-ary)
» Each D;is a declared domain
« Domains atomic
types of programming languages

2. Arelational database is a set of relations and
possibly constraints among the relations

Relational Database: Terminology

Schema for a relation:
1. Relation name

2. Domain (type) of each component
i.e. declare D; s

Equivalent:
— Instance of a scheme
— Table

Term “relation” is used to refer to a schema and a particular
instance — disambiguate by context

Relational Database: More Terminology

Each D, of a schema is referred to as a
component or attribute or field or column of the schema

Each d, of a tuple = (d,, d,, d3, _d,) is referred to as
component or attribute or field of the tuple

Each tuple of a relation is also referred to as an
element or row of the relation attributes—

elements

!

9/27/11

Translating ER model to relational

* Domains — domains
* Entity — relation
* Relationship — one* or more relations

come back to
Constraints — constraints BUT
»Not all ER constraints expressible in basic
relational model

Relational model is FLAT — no hierarchy!

Our ER Example — Relational schema

For entities, get relations:

books: (title, ISBN#, edition, date
authors:

name, gender, birth date, place of birth, date of death
publishers: (name, country, address

Need declare domains:
e.g. title: string

Same defs candidate keys, primary key, superkeys

Our ER Example — Relational schema

For relationships:

ER published by: (books, publishers, in print
becomes

published by: (isbn#, publisher_name, in print
key constraint on entity books in relationship published by —
Abook has at most one publisher

ER written by: (books, authors
becomes
written by:
isbn#, author_name, birth date, place of birth

Our ER Example — Relational schema

Because ER key constraint on entity books in
relationship published by
Can fold relation published by into relation books:

books:
title, ISBN#, edition, date, pub_name, in print

What if some books not published?
i.e. entity books not totally participate in relationship
published by

Our ER Example — Relational schema

books:
title, ISBN#, edition, date, pub_name, in print

What if some books not published?
i.e. entity books not totally participate in relationship published by

Must allow values of attributes
pub_name and in print to be

Translating ER model to relational

Relationship — ene or more relations

Translating ER model to relational

* Get flat set of relations
« But relations are interrelated

— Bring together primary keys of different
relations to build new relation

— Captures ER relationship
* How capture this in relational model?
Foreign key constraints

9/27/11

Foreign key constraint

 Specify that a set of attributes in schema
for one relation form a primary key for a
specific other relation

— “other relation” is referred to or referenced by

first relation
attrib3, \attrib4, (attrib5

attrib1, attrib2) attrib3, attrib4)

R1: (attrib1, attrib2,

R1 refers to/references R2

R2:

Foreign Keys for Our Example

published by: (isbn#, publisher_name, in print)
isbn# is a foreign key referencing books
Primary key of books understood
Publisher_name is a foreign key referencing
publishers

written by:

(isbn#, author name, birth date, place of birth)
isbn# is a foreign key referencing books;
(author_name, birth date, place of birth) is a
foreign key referencing authors

Summary of board example:
with Copies as weak entity

$ % PU branches

Copies

ER key constraints
PU book folded into Copies
PU holding folded into Copies

Relational model:
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, copy#, condition, br_name)
br_name not null
isbn# is a foreign key referencing Books
br_name is a foreign key referencing PU branches

Summary of board example:
with Copies as strong entity

PU branches

Because ER key constraints
PU book folded into Copies
Relational model: PU holding folded into Copies
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, call #, copy #, condition, br_name)
br_name not null
ISBN# not null {CINEW
isbn# is a foreign key referencing Books
br_name is a foreign key referencing PU branches

Summary of board example:
Alternative with Copies as strong entity

PU branches

Relational model:
Books: (title, ISBN#, edition, date)
PU branches: (br_name, librarian, hours)
Copies: (ISBN#, call #, copy #, condition)
ISBN# not null
isbn# is a foreign key referencing Books
PU holding: (call #, copy #, br_name)
(call #, copy #) is a foreign key referencing Copies
br_name is a foreign key referencing PU branches

Because ER key constraints
PU book folded into Copies

Board example:

Total participation of Copies?
Copies: (ISBN#, call #, copy #, condition, br_name

br_name not null

ISBN# not null

isbn# is a foreign key referencing Books

br_name is a foreign key referencing PU branches

capture total participation in PU book and PU holding
because PU book, PU holding represented within Copies

versus
PU holding: (call #, copy #, br_name)
(call #, copy #) is a foreign key referencing Copies
br_name is a foreign key referencing PU branches

br_name “not null” would not capture that every (call #, copy
#) value is in a PU holding pair

9/27/11

Board example:
Total participation of PU branches?

Can’t get constraint applied to all PU branch
tuples without being part of PU branch relation

=>Total participation of PU branches in PU holding
not representable in pure relational definition

Basic Paradigm

« Each entity becomes a relation
« Relationship becomes

R: { list of attributes forming key of Entity 1 (denote L,),
list of attributes forming key of Entity 2 (denote L,), Note
primary
list of attributes forming key of Entity k (denote L), &Y
Attribute R_A,, ..., Attribute R_A
L, is a foreign key referencing Entity 1,

L, is a foreign key referencing Entity k }

What about constraints on
relationships?

» Key constraint:
— Simplifies key of corresponding relation
— Allows folding of relation into key entity

« Total participation constraint:
— In general, cannot represent in purely relational
definition:
« Domain specification
« Keys of relations

« Foreign keys n
“ 9 ” 4 relational definition
* “not null’s

Constraints have

Clarifying null values
and foreign keys

For Basic Paradigm
(binary relationship)

« Each entity becomes a relation with same attributes
« Relationship becomes

R: { (21 ----- 8 Dy s Do Ty s Ty)
@, ..y ayisa foreign key referencing A,

(by, ..., by) is a foreign key referencing B }

can be no null values among a; and b; in tuple of R
make up R’s primary key

When one entity (e.g. Entity A) has key
constraint and fold R into it

9/27/11

When have key constraint and total
participation and fold R in

*Entity B becomes a relation with same attributes
* Relationship R becomes part of relation for Entity A:

3py X4 Ko Dy ey By Ty ey Ty)

(b, ..., by) is a foreign key referencing B }

now need to allow null values for b, ... b in A
not every entity in Ais related to an entity in B

* Entity B becomes a relation with same attributes
* Relationship R becomes part of relation for Entity A:
A: {(51 ap, Xy, o Xy, b, ...,bq,r1,...,rm)
(b, ..., by) is a foreign key referencing B
b, not null, ..., bq not null }

now prohibit null values for b, ... b,in A
every entity in A is related to an entity in B

Enforcing relational constraints

« Constraints must be satisfied at all times

What happens when tuples in relations
change?

Action of changing a relation not part of
basic relational model

Database language implementing model
enforces

Enforcement in SQL

SQL commands changing relations:
INSERT, DELETE, UPDATE

* Domain constraints

— Don't allow attribute value not in domain
INSERT or UPDATE fails

* “Not null” constraints
— Special case of domain constraints

Enforcement in SQL

» Candidate key constraints
— Can have other candidate keys declared as
well as primary key
— Don't allow 2" tuple with same key value
INSERT or UPDATE fails

— Implicit “not null” for attributes in a key
INSERT or UPDATE fails

Enforcement in SQL

» Foreign key constraints

Suppose Y denotes a set of attributes of relation B
that reference the primary key of relation A.

— Don't allow tuple into B if no tuple in A with
matching values for Y
INSERT or UPDATE fails

Enforcement in SQL

Foreign key constraints continued
— suppose want to remove a tuple in A

— Suppose there is a tuple in B with matching
values for Y

Choices (in SQL):
1. Disallow deletion from A
DELETE or UPDATE fails

9/27/11

Enforcement in SQL

Choices (in SQL) continued:

2. Ripple effect (CASCADE):
— Remove tuple from A and all tuples from B with
matching values for Y
— DELETE or UPDATE in A causes DELETE in B

3. Substitute value
— Put “null” (if Y not part of candidate key for B) or
other default value for Y in B
— DELETE or UPDATE in A causes UPDATE in B

Actions for board example?

Books: (title, ISBN#, edition, date

PU branches: (br_name, librarian, hours

Copies: (1ISBN#, copy#, condition, purchase date, br_name
br_name not null
isbn# is a foreign key referencing books

br_name is a foreign key referencing PU branches

What about constraints not
expressible in ER model?

» Value-based constraints?
* General functional constraints?

In relational model:

 Declaring and enforcing these depend on
use of database language

* Use query semantics to check

