COS 597A:
Principles of
Database and Information Systems
Relational model:
Relational calculus

Tuple Relational Calculus

Queries are formulae, which define sets using:

1. Constants
2. Predicates (like select of algebra)
3. Boolean and, or, not
4. \exists there exists
5. \forall for all

Variables range over tuples
Value of an attribute of a tuple T can be referred to in predicates using T[attribute_name]

Example: $\{\mathrm{T} \mid \mathrm{T} \varepsilon$ Winners and T[year] > 2006 \}
\qquad

Winners: (name, tournament, year); base relation of database

Formula defines relation

- Free variables in a formula take on the values of tuples
- A tuple is in the defined relation if and only if when substituted for a free variable, it satisfies (makes true) the formula

Free variable:
$\exists x, \forall x$ bind x - truth or falsehood no longer depends on a specific value of x
If x is not bound it is free

Quantifiers

There exists: $\exists x(f(x))$ for formula f with free variable x

- Is true if there is some tuple which when substituted for x makes f true

For all: $\forall x(f(x))$ for formula f with free variable x

- Is true if any tuple substituted for x makes f true i.e. all tuples when substituted for x make f true

Example

$\{T \mid \exists \mathrm{A} \exists \mathrm{B}(\mathrm{A} \varepsilon$ Winners and $\mathrm{B} \varepsilon$ Winners and A [name] $=\mathrm{T}[$ name $]$ and A [tournament] $=\mathrm{T}[$ tournament] and
$\mathrm{B}[$ tournament $]=\mathrm{T}[$ tournament $]$ and $\mathrm{T}[$ name 2$]=\mathrm{B}[$ name $])\}$

- T not constrained to be element of a named relation
- Result has attributes defined by naming them in the formula: T[name], T[tournament], T[name2]
- so schema for result: (name, tournament, name2) unordered
- Tuples T in result have values for (name, tournament, name2) that satisfy the formula

What is the resulting relation?

Formal definition: formula

- A tuple relational calculus formula is
- An atomic formula (uses predicate and constants):
- T $\varepsilon \mathrm{R}$ where
-T is a variable ranging over tuples
-R is a named relation in the database - a base relation
- T[a] op W[b] where
- a and b are names of attributes of T and W, respectively,
op is one of $<>=\neq \leq \geq$
-T[a] op constant
- constant op T[a]

Formal definition: formula cont.

- A tuple relational calculus formula is
- An atomic formula
- For any tuple relational calculus formulae f and g - (f)
- not(f)
- f and g
- f or g
- $\exists \mathrm{T}(\mathrm{f}(\mathrm{T}))$ for T free in $\mathrm{f}>$ Quantified
- $\forall T(f(T))$ for T free in f

Quantified

Formal definition: query

A query in the relational calculus is a set definition $\{T \mid f(T)\}$
where $\quad f$ is a relational calculus formula
T is the only variable free in f

The query defines the relation Result consisting of tuples T that satisfy f

The attributes of Result are either defined by name in f or inherited from base relation R by a predicate $\mathrm{T} \varepsilon \mathrm{R}$

Some abbreviations for logic

- $(p=>q)$ equivalent to $((\operatorname{not} p)$ or $q)$
- $\forall x(f(x))$ equiv. to $\operatorname{not}(\exists x(\operatorname{not} f(x)))$
- $\exists x(f(x))$ equiv. to $\operatorname{not}(\forall x(\operatorname{not} f(x)))$
- $\forall \mathrm{X} \varepsilon \mathrm{S}(\mathrm{f})$ equiv. to $\forall \mathrm{Xx}((\mathrm{x} \varepsilon \mathrm{S})=>\mathrm{f})$
$\cdot \exists x \varepsilon S$ (f) equiv. to $\exists x((x \varepsilon S)$ and $f)$

Example: relating to algebra

- How do projection in calculus?
$\pi_{\text {name, year }}$ (Winners)
becomes
\{T| $\exists \mathrm{W}(\mathrm{W} \varepsilon$ Winners \wedge
$\mathrm{T}[$ name $]=\mathrm{W}[$ name $] \wedge$ $\mathrm{T}[$ year $]=\mathrm{W}[$ year $]) \quad\}$
\wedge denotes AND

Board Examples

Database:

students: (SS\#, name, PUaddr, homeAddr, classYr)
employees: (SS\#, name, addr, startYr)
jobs: (position, division, SS\#, managerSS\#)
division foreign key referencing PUdivision
study: (SS\#, academic_dept., adviser)
SS\# foreign key referencing students
PUdivision: (division name, address, director)

Board Example 1
find SS\#, name, and classYr of all student employees
Board Example 2
find (student, manager) pairs where both are students - report SS\#s

Board Example 3
find names of all CS students working for the library (library a division)

Board Example 4
Find academic departments that have students working in all divisions

Clarifying issue with \forall

Consider simpler example than Board Example 4
Relations: for_sale:(house, town)
showing:(client, house)
house foreign key references for_sale
Query: clients who have seen all houses for sale
Try:
$\{T \mid \forall F \varepsilon$ for_sale $\exists W \varepsilon$ showing (T[client] = W[client] and W[house]=F[house]) \}

If no houses for sale at this instant? i.e. F empty

Relations: for_sale:(house, town) showing:(client, house) house foreign key references for_sale

Query: clients who have seen all houses for sale
If for_sale empty, " $\forall F \varepsilon$ for_sale (...)" is true
Then any tuple T over domain of client satisfies => infinite
Fix: Adding leading, independent \exists :
$\{T \mid \exists S \varepsilon$ showing (T[client]=S[client]) and $\forall F \varepsilon$ for_sale $\exists W \varepsilon$ showing
(T[client] = W[client] and W[house]=F[house]) \}
Now what is result if for_sale is empty?

Evaluating query in calculus

Declarative - how build new relation $\{x \mid \mathrm{f}(\mathrm{x})\}$?

- Go through each candidate tuple value for x
- Is $f(x)$ true when substitute candidate value for free variable x ?
- If yes, candidate tuple is in new relation
- If no, candidate tuple is out

What are candidates?

- Do we know domain of x ?
- Is domain finite?

Problem

- Consider $\{\mathrm{T} \mid \operatorname{not}(\mathrm{T} \varepsilon$ Winners) $\}$
- Wide open - what is schema for Result?
- Consider $\{\mathrm{T} \mid \forall \mathrm{S}(\mathrm{S} \varepsilon$ Winners) $)$ =>
(not (T[name] = S[name] and
T[year] = S[year]))) \}
- Now Result:(name, year) but universe is infinite

Don't want to consider infinite set of values

Constants of a database and query

Want consider only finite set of values

- What are constants in database and query?

Define:

- Let I be an instance of a database
- A specific set of tuples (relation) for each base relational schema
- Let Q be a relational calculus query
- Domain (I, Q) is the set of all constants in Q or I
- Let $Q(I)$ denote the relation resulting from applying Q to I

Safe query

A query Q on a relational database with base schemas $\left\{R_{i}\right\}$ is safe if and only if:

1. for all instances I of $\left\{R_{i}\right\}$, any tuple in $Q(I)$ contains only values in Domain(I, Q)

Means at worst candidates are all tuples can form from finite set of values in Domain(I, Q)

Safe query: need more
Require testing quantifiers has finite universe:
2. For each $\exists T(p(T))$ in the formula of Q, if $\mathrm{p}(t)$ is true for tuple t, then attributes of t are in Domain(I, Q)
3. For each $\forall T(p(T))$ in the formula of Q, if t is a tuple containing a constant not in Domain (I, Q), then $\mathrm{p}(t)$ is true
=> Only need to test tuples in Domain(I, Q)

Equivalence Algebra and Calculus

The relational algebra and the tuple relational calculus over safe queries
are equivalent in expressiveness

Summary

- The relational calculus provides an alternate way to express queries
- A formal model based on logical formulae and set theory
- Equivalence with algebra means can use either or both - but only one for formal proofs
- Next we will see that SQL borrows from both

Safe query: all conditions

A query Q on a relational database with base schemas $\left\{R_{i}\right\}$ is safe if and only if:

1. for all instances I of $\left\{R_{i}\right\}$, any tuple in $Q(I)$ contains only values in Domain(I, Q)
2. For each $\exists T(p(T))$ in the formula of Q, if $p(t)$ is true for tuple t, then attributes of t are in Domain(I, Q)
3. For each $\forall T(p(T))$ in the formula of Q, if t is a tuple containing a constant not in Domain(I, Q), then $\mathrm{p}(t)$ is true

Domain relational calculus

- Similar but variables range over domain values (i.e. attribute values) not tuples
- Is equivalent to tuple relational calculus when both restricted to safe expressions

Example:
$\{<N, K, M>\mid \exists Y \exists Z(<N, K, Y>\varepsilon$ Winners and

$$
<\mathrm{M}, \mathrm{~K}, \mathrm{Z}>\varepsilon \text { Winners) }\}
$$

N, M range over Winners.name
K ranges over Winners.tournament
Y, Z range over Winners.year

