

Modeling access

- Have looked at modeling information as data + structure
- Now: how model access to data in relational model?
- Formal specification of access provides:
- Unambiguous queries
- Correctness of results
- Expressiveness of query languages

Queries

- A query is a mapping from a set of relations to a relation

$$
\text { Query: relations } \rightarrow \text { relation }
$$

- Can derive schema of result from schemas of input relations
- Can deduce constraints on resulting relation that must hold for any input relations
- Can identify properties of result relation

Relational query languages

- Two formal relational languages to describe mapping
- Relational algebra
- Procedural - lists operations to form query result
- Relational calculus
- Declarative - describes results of query
- Equivalent expressiveness
- Each has strong points for usefulness
- DB system query languages (e.g. SQL) take best of both

begin with Relational Algebra

Basic operations of relational algebra:

1. Selection σ :select a subset of tuples from a relation according to a condition
2. Projection π :delete unwanted attributes (columns) from tuples of a relation
3. cross product X : combine all pairs of tuples of two relations by making tuples with all attributes of both
4. Set difference - :* tuples in first relation and not in second
5. union U:* tuples in first relation or second relation
6. Renaming ρ : to deal with name conflicts

* Set operations: $D_{1} \times D_{2} \ldots \times D_{k}$ of two relations must agree

Selection $\sigma_{P}(R)$

- relation R
- predicate P on attributes of R
- resulting relation
- schema same as R
- contains those tuples of R that satisfy P
- candidate keys and foreign keys in R are preserved
- eliminating tuples doesn't cause violations

Selection Example

Students: (name, address, gender, age, grad yr)
Instance:

name	address	gender	age	grad yr
Joe	\ldots	NY	M	24
Sally	\ldots	F	25	3
Joe	\ldots	NJ	M	23
Jan	\ldots	F	27	4

$\sigma_{\text {age }}<25$ (Students): (name, address, gender, age, grad yr)

name	$\underline{\text { address }}$	gender	age	grad yr	
Joe	\ldots	NY	M	24	2
Joe	\ldots	NJ	M	23	2

Projection $\pi_{S}(R)$

- relation R
- S a list of attributes from R - projected attributes
- resulting relation:
- scheme is attributes in S
- contains all tuples formed by taking a tuple from R and keeping only the attributes listed in S
- relations are sets \Rightarrow duplicates are removed
- In practice, usually not removed unless explicitly requested
- if $\left\{\begin{array}{l}\text { candidate } \\ \text { foreign }\end{array}\right.$ key projected, constraint preserved
- if no candidate key is projected, only candidate key may be all attributes in S - (set model)

Projection $\pi_{S}(R)$

- relation R
- S a list of attributes from R - projected attributes
- resulting relation:
- scheme is attributes in S
- contains all tuples formed by taking a tuple from R and keeping only the attributes listed in S
- relations are sets \Rightarrow duplicates are removed
- In practice, usually not removed unless explicitly requested
- if $\left\{\begin{array}{l}\text { candidate } \\ \text { foreign }\end{array}\right.$ key projected, constraint preserved
- if no candidate key is projected, key?

Projection Example

Students: (name, address, gender, age, grad yr)
Instance:

name	addr	gender	age	grad yr
Joe	\ldots NY	M	24	2
Sally	\ldots	F	25	3
Joe	\ldots NJ	M	23	2
Jan	\ldots	F	27	4

$\Pi_{\text {name, grad yr }}$ (Students): (name, grad yr)

Composing operators

- An algebra

- composition works as in other algebras
- are properties to use to re-order operations
- Example

| | $\pi_{\text {name, age }}\left(\sigma_{\text {age }<25}(\right.$ Students $\left.)\right):$name age
 Joe 24
 $\sigma_{\text {age }<25}\left(\pi_{\text {name, age }}(\right.$ Students $\left.)\right) ?$
 Joe$\|$ |
| :---: | :--- | :--- |

Set operations

- for relations $R, S \subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$
- where D_{i} is the domain for the $i^{\text {th }}$ attribute
- i.e. R and S on same universe
- Union RUS $\subseteq D_{1} \times D_{2} X \ldots \times D_{k}$:
- contains any tuple in either R or S
- formal model removes duplicates
- candidate keys?
- foreign keys?
- Set difference $R-S \subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$:
- includes all tuples in R that are not in S
- constraints left as an exercise

Example for Union

- relations:
mayors: (name, street address, city, party)
legislators: (name, street address, city, district, party)
mayors Xlegislators? not same universe redefine:
mayors: (name, street address, city, term, party)
If "term", "district" both integers
\Rightarrow same domain \Rightarrow can union
candidate key of mayors U legislators?

Example for Union

- relations:
mayors: (name, street address, city, term, party)
legislators: (name, street address, city, district, party)
- candidate key of mayors U legislators? not (city, district)
(Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term
(Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston
$>$ foreign key of mayors U legislators?
- corresponding components need not be the same attribute "term" versus "district"

CORRECTION

Candidate keys for union

I suggested if both R and S have same candidate key then will be candidate key for $\mathrm{R} \cup \mathrm{S}$. NO!

Generally, one key value determines two tuples one from S and one from R.

Example: gs_alum: (ss\#, dept) ugrad_alum: (ss\#, dept)
ss\# of alum who was both ugrad and grad but in different departments will appear in two tuples of gs_alum U ugrad_alum

Set operations revisited

- for relations $R, S \subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$
- where D_{i} is the domain for the $i^{\text {th }}$ attribute
- i.e. R and S on same universe
- Union RUS $\subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$:
- contains any tuple in either R or S
- formal model removes duplicates
$>$ candidate keys are not generally preserved
$>$ a foreign key is preserved if it is a foreign key for both R and S using corresponding attributes and referencing the same relation
- Set difference $R-S \subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$:
- includes all tuples in R that are not in S
- constraints left as an exercise

Cross product R X T

- Relations
$-R \subseteq D_{1} \times D_{2} X \quad \ldots \quad X D_{k}$
$-T \subseteq S_{1} \times S_{2} X \ldots X S_{m}$
- Resulting relation:
$-R X T \subseteq D_{1} \times D_{2} \times \ldots \times D_{k} X S_{1} \times S_{2} \times \ldots \times S_{m}$
- tuple $\left(d_{1}, d_{2}, \ldots, d_{k}, s_{1}, s_{2}, \ldots, s_{m}\right) \varepsilon R X T$ if and only if
$\left(d_{1}, d_{2}, \ldots, d_{k}\right) \varepsilon R$ and $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \varepsilon T$
$-|R \times T|$? $|R|$ denotes the number of tuples in R
- candidate keys?
- foreign keys?

Cross product R X T: keys

- Resulting relation:
$-R \times T \subseteq D_{1} \times D_{2} \times \ldots \times D_{k} \times S_{1} \times S_{2} \times \ldots \times S_{m}$
- tuple $\left(d_{1}, d_{2}, \ldots, d_{k}, s_{1}, s_{2}, \ldots, s_{m}\right) \varepsilon R X T$
if and only if
$\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{k}}\right) \varepsilon \mathrm{R}$ and $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{m}}\right) \varepsilon \mathrm{T}$
$-|R \times T|=|R| *|T|$
$>$ candidate keys:
$\left\{\left(d_{i 1}, d_{i 2}, \ldots d_{i \alpha}\right)\right.$ candidate key for R
$\int\left\{\begin{array}{l}\left(d_{11}, d_{i 2}, \ldots s_{i \alpha}\right) \text { candidate key for } T\end{array}\right.$
\rightarrow the union of the attributes form a candidate key for $R \times T$ - positions i1, i2, .. ia, $k+j 1, k+j 2 \ldots k+j \beta$ of $R X T$
$>$ foreign keys: for each of R and T are preserved using corresponding attributes of RXT.

Naming attributes

- Usually give attributes names -SS\#, city, age, ...
- For cross-product, candidate key used positions in tuples to identify attributes
- Alternative naming: R.d d_{i} and T. s_{j} - Mayors.city, Legislators.city
- What if R X R ?
- use positions of resulting tuples
- rename one of the copies of R

Renaming $\rho(\mathrm{Q}(\mathrm{L}), \mathrm{E})$

- E a relational algebra expression
- Q a new relation name
- L is a list of mappings of attributes of E :
- mapping (old name \rightarrow new name)
- mapping (attribute position \rightarrow new name)
- resulting relation named Q
- is relation expressed by E
- attributes renamed according to mappings in list L
- Q can be omitted; L can be empty
- All constraints on relation expressed by E are preserved with appropriate renaming of attributes.

Using cross-product and renaming

- Cross-product allows coordination
- Example

S: (stulD, name) R: (stulD, room\#)
find relation giving (name, room\#) pairs:
combine: S X R
coordinate: $\sigma_{\text {S.stulD }}=$ R.stulD $(S \times R)$
get result: $\quad \Pi_{S . n a m e, ~ R . r o o m \# ~}\left(\sigma_{S . s t u l D}=R\right.$. stulD $\left.(S X R)\right)$
find pairs of names of roommates?

What does this expression find?

Given relation R containing attribute value
$\Pi_{\text {value }}(R)-\Pi_{R . v a l u e}\left(\sigma_{R . v a l u e}<Q\right.$. value $\left.(R \times \rho(Q, R))\right)$

Formal definition

- A relational expression is
- A relation R in the database
- A constant relation
- For any relational expressions E_{1} and E_{2}
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $\sigma_{P}\left(E_{1}\right)$ for predicate P on attributes of E_{1}
- $\pi_{s}\left(E_{1}\right)$ where S is a subset of attributes of E_{1}
- $\rho\left(Q(L), E_{1}\right)$ where Q is a new relation name and L is a list of (old name \rightarrow new name) mappings of attributes of E_{1}
- A query in the relational algebra is a relational expression

Relational algebra: derived operations

- operations can be expressed as compositions of fundamental operations
- operations represent common patterns
- operations are very useful for clarity

Intersection R n T

- direct from set theory

$$
R \cap T=R-(R-T)
$$

- example
students: (SS\#, name, PUaddr, homeAddr, classYr)
employees: (SS\#, name, addr, startYr)
find student employees:
$\pi_{S S \#, ~ n a m e, ~ P U a d d r}\left(\right.$ students) $\cap \pi_{S S \#, \text { name, addr }}$ (employees)
or
$\pi_{\text {ss\#, name }}$ (students) $\cap \pi_{\text {ss\#, name }}$ (employees)
or
$\Pi_{\text {sS\# }}$ (students) $\cap \Pi_{\text {ss\# }}$ (employees) \leftarrow safest
or ...

Natural Join $\mathrm{R} \diamond \diamond \mathrm{T}:$ motivation

- Relations R and T
- Captures paradigm:
combine: $\mathrm{R} \times \mathrm{T}$
coordinate: $\sigma_{p}(R \times T)$
get result: $\pi_{S}\left(\sigma_{P}(R X T)\right)$
- For relations that have one or more attributes that share name and domain
- Need to refer to attributes shared by identical name
- Example
students: SS\#, name, PUaddr, homeAddr, class Y r)
employees: (SS\#, name, addr, startYr)

Natural Join $\mathrm{R} \diamond \diamond \mathrm{T}$: definition

Let $\alpha(R)=$ the set of names of attributes in the schema for R - Example: α (Students) $=\{S S \#$, name, PUaddr, homeAddr, class $\mathrm{Y} r\}$

Let $\alpha(T)=$ the set of names of attributes in the schema for T - Example: $\alpha($ Employees $)=\{S S \#$, name, addr, startYr $\}$

Let $\alpha(R) \cap \alpha(T)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$

- Example: α (Students) $\cap \alpha$ (Employees) $=\{$ SS\#, name $\}$
$R \diamond \diamond T=\Pi_{\alpha(R) \cup a(R)}\left(\sigma_{R . a_{1}=T . a_{1}, R \cdot a_{2}=T . a_{2}, \ldots, R \cdot a_{k}=T . a_{k}}(R X T)\right)$
- Students $\Delta>$ Employees
scheme: (SS\#, name, PUaddr, homeAddr, class $Y r$ r, addr, startYr) Student tuple and Employee tuple agree on values of SS\#, name => tuple in join
fill in values of the other attributes of the pair

Natural Join R $\diamond \diamond$ T: remarks

for $\alpha(R) \cap \alpha(T)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$

each "=" test not valid if not on same domain could weaken to compatible domains

Division $R \div Q$ - motivation

- Suggested by inverse of cross-product $(R \div Q) X Q \subseteq R$ but may not equal R
- Find fragments of tuples of R that appear in R paired with all tuples of Q
- Example: database of tennis
- relation Winners: (name, tournament, year)
- find all players who have won all tournaments represented in the Winners relation

Division $R \div Q$ - definition

Given relations Q and R with attribute sets $\alpha(Q)$ and $\alpha(R)$, Such that
$-\alpha(Q)$ is a proper subset of $\alpha(R)$

- corresponding attributes in $\alpha(R) \cap \alpha(Q)$ are on the same domain

Define

- $R \div Q$ is a relation with attribute set $\alpha(R \div Q)=\alpha(R)-\alpha(Q)$
- A tuple is in $R \div \mathrm{Q}$ exactly when combining (concatenating) it with every tuple in Q yields a tuple in R
$-R \div Q$ is a subset of $\pi_{a(R)-a(Q)}(R)$
- not necessarily =
- attribute order not maintained => using names to identify attributes

Division $R \div Q$ - example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in the Winners relation

1. all tournaments: $\pi_{\text {tournament }}$ (Winners)
2. divide into something
winners $\div \pi_{\text {tournament }}($ Winners $): \quad$ (name, year)
if tournaments are \{US, French, Australian\} need
(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)
to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)
\Rightarrow get win all tournaments in same year
next try?

Division $\mathrm{R} \div \mathrm{Q}$ - example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in the Winners relation

1. all tournaments: $\pi_{\text {tournament }}$ (Winners)
2. divide into $\Pi_{\text {name,tournament }}$ (Winners) : (name, tournament)
$\pi_{\text {name, tournament }}($ Winners $) \div \pi_{\text {tournament }}$ (Winners) : (name)
Gives desired result

Division $\mathrm{R} \div \mathrm{Q}$ - how derive

$R \div Q$ is expressed with basic relational operations as
$\pi_{\alpha(R)-\alpha(Q)}(R)-\pi_{\alpha(R)-\alpha(Q)}\left(\left(\Pi_{\alpha(R)-\alpha(Q)}(R) X Q\right)-R\right)$ Huh?

- $R \div Q$ is a subset of $\pi_{\alpha(R)-\alpha(Q)}(R)$
- what's in $\pi_{a(R)-\alpha(Q)}(R)$ and not in $R \div Q$?
- a tuple that can't be combined with every tuple in Q to get a tuple in R
\Rightarrow a combined tuple of $\prod_{\alpha(R)-a(Q)}(R) X Q$ that isn't in R \Rightarrow a tuple of $\pi_{\alpha(R)-\alpha(Q)}\left(\left(\pi_{\alpha(R)-\alpha(Q)}(R) X Q\right)-R\right)$

Board Examples

Database:
students: (SS\#, name, PUaddr, homeAddr, classYr) employees: (SS\#, name, addr, startYr) jobs: (position, division, SS\#, managerSS\#)
division foreign key referencing PUdivision
study: (SS\#, academic_dept., adviser)
SS\# foreign key referencing students
PUdivision: (division name, address, director)

Board Example 1

saw find student employees:
$\Pi_{\text {ss\# }}$ (students) $\cap \pi_{\text {ss\# }}$ (employees) \leftarrow safest
now: find SS\#, name, and classYr of all student employees

Board Example 2

find (student, manager) pairs where both are students - report SS\#s

Board Example 3

find names of all CS students working for the library (library a division)

Board Example 4

Find academic departments that have students working in all divisions

Relational algebra: extended operations

- operations cannot be expressed as compositions of fundamental operations
- operations allow arithmetic, counting, grouping, and extending relations
- part of database system language
- postpone to SQL discussion

Summary

- Relational algebra operations provide foundation of query languages for database systems
- Derived operations, especially joins, simplify expressing queries
- Formal algebraic definition allow for provably correct simplifications, optimizations for query evaluation

