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COS 597A:  
Principles of  

Database and Information Systems 

Relational model: 
Relational algebra 

Modeling access  

•  Have looked at modeling information as 
data + structure 

•  Now:  how model access to data in 
relational model? 

•  Formal specification of access provides: 
– Unambiguous queries 
– Correctness of results 
– Expressiveness of query languages 

Queries 

•  A query is a mapping from a set of relations to a 
relation 

Query: relations  → relation 

•  Can derive schema of result from schemas of 
input relations 

•  Can deduce constraints on resulting relation that 
must hold for any input relations 

•  Can identify properties of result relation 

Relational query languages 
•  Two formal relational languages to describe mapping 

–  Relational algebra 
•   Procedural – lists operations to form query result 

–  Relational calculus 
•   Declarative – describes results of query 

•  Equivalent expressiveness 
•  Each has strong points for usefulness 

–  DB system query languages (e.g. SQL) 
take best of both 

begin with Relational Algebra 
Basic operations of relational algebra: 
1.  Selection σ :select a subset of tuples from a relation 

according to a condition 
2.  Projection π :delete unwanted attributes (columns) 

from tuples of a relation 
3.  cross product X : combine all pairs of tuples of two 

relations by making tuples with all attributes of both 
4.  Set difference – :* tuples in first relation and not in 

second 
5.  union U:* tuples in first relation or second relation 
6.  Renaming ρ: to deal with name conflicts 

* Set operations:  D1 X D2 … X Dk of two relations must agree 

Selection σP(R)  

•  relation R  
•  predicate P on attributes of R 
•  resulting relation  

– schema same as R  
– contains those tuples of R that satisfy P 
– candidate keys and foreign keys in R are 

preserved 
•  eliminating tuples doesn’t cause violations 



10/4/11 

2 

Selection Example 
Students: (name, address, gender, age, grad yr) 
Instance: 

σage < 25 (Students): (name, address, gender, age, grad yr) 

name address gender age grad yr 

Joe …   NY M 24 2 

Sally … F 25 3 

Joe …    NJ M 23 2 

Jan … F 27 4 

name address gender age grad yr 
Joe …    NY M 24 2 

Joe …    NJ M 23 2 

Projection πS(R) 
•  relation R  
•  S a list of attributes from R - projected attributes 
•  resulting relation: 

–  scheme is attributes in S 
–  contains all tuples formed by taking a tuple from R 

and keeping only the attributes listed in S 
–  relations are sets  duplicates are removed 

•  In practice, usually not removed unless explicitly requested 

–  if                    key projected, constraint preserved 

–  if no candidate key is projected, key? 

candidate 
foreign 

Projection πS(R) 
•  relation R  
•  S a list of attributes from R - projected attributes 
•  resulting relation: 

–  scheme is attributes in S 
–  contains all tuples formed by taking a tuple from R 

and keeping only the attributes listed in S 
–  relations are sets  duplicates are removed 

•  In practice, usually not removed unless explicitly requested 

–  if                      key projected, constraint preserved 

–  if no candidate key is projected,  
   only candidate key may be all attributes in S  

•  (set model) 

candidate 
foreign 

Projection Example 
Students: (name, address, gender, age, grad yr) 
Instance: 

πname, grad yr(Students): (name, grad yr) 

name addr gender age grad yr 

Joe … NY M 24 2 

Sally … F 25 3 

Joe …  NJ M 23 2 

Jan … F 27 4 
name grad yr 

Joe 2 

Sally 3 

Jan 4 

Composing operators 

•  An algebra 
– composition works as in other algebras 
– are properties to use to re-order operations 

•  Example 
•  πname, age (σage < 25 (Students)): 

σage < 25 (πname, age (Students))? 

name age 

Joe 24 

Joe 23 

Set operations 
•  for relations R, S ⊆  D1 X D2 X … X Dk  

–  where Di is the domain for the ith attribute 
–  i.e. R and S on same universe 

•  Union    RUS ⊆  D1 X D2 X … X Dk: 
–  contains any tuple in either R or S 
–  formal model removes duplicates 
–  candidate keys ? 
–  foreign keys? 

•  Set difference     R-S ⊆  D1 X D2 X … X Dk: 
–   includes all tuples in R that are not in S 
–  constraints left as an exercise 
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Example for Union 
•  relations: 

mayors: (name, street address, city, party) 
legislators: (name, street address, city, district, party) 

mayors  U legislators?   not same universe 
redefine:  

mayors: (name, street address, city, term, party) 
If “term”, “district” both integers  

⇒  same domain ⇒ can union 

candidate key of mayors  U legislators?  

X 

Example for Union 
•  relations: 

            mayors: (name, street address, city, term, party) 
        legislators: (name, street address, city, district, party) 

•  candidate key of mayors  U legislators? 
not (city, district) 

( Joe Smith,  9 Main St., Kingston, 1, democrat) 
Joe is mayor of Kingston in his first term 

( Sally Jones, 11 River Rd., Kingston, 1, republican) 
Sally is the legislator from the first district and lives in Kingston 

 foreign key of  mayors U legislators? 
–  corresponding components need not be the same attribute 

“term” versus “district” 

CORRECTION 
Candidate keys for union 

   I suggested if both R and S have same candidate 
key then will be candidate key for R U S.   NO! 

   Generally, one key value determines two tuples – 
one from S and one from R. 

   Example:  gs_alum: (ss#, dept) 
                    ugrad_alum: (ss#, dept)  
   ss# of alum who was both ugrad and grad but in different 

departments will appear in two tuples of  
   gs_alum U ugrad_alum 

Set operations revisited 
•  for relations R, S ⊆  D1 X D2 X … X Dk  

–  where Di is the domain for the ith attribute 
–  i.e. R and S on same universe 

•  Union    RUS ⊆  D1 X D2 X … X Dk: 
–  contains any tuple in either R or S 
–  formal model removes duplicates 
  candidate keys are not generally preserved 
  a foreign key is preserved if it is a foreign key for both 

R and S using corresponding attributes and 
referencing the same relation 

•  Set difference     R-S ⊆  D1 X D2 X … X Dk: 
–   includes all tuples in R that are not in S 
–  constraints left as an exercise 

Cross product R X T

•  Relations  

–  R ⊆ D1 X D2 X    …     X Dk  
–  T ⊆  S1 X S2 X  …   X Sm 

•  Resulting relation: 
–  R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm 
–  tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm ) ε R X T  
   if and only if  
   (d1 , d2 ,… , dk ) ε R and (s1, s2, … , sm ) ε T 
–  |R X T|  ?    |R| denotes the number of tuples in R 

–  candidate keys? 
–  foreign keys? 

Cross product R X T:  keys

•  Resulting relation: 

–  R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm 
–  tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm ) ε R X T  
   if and only if  
   (d1 , d2 ,… , dk ) ε R and (s1, s2, … , sm ) ε T 
–  |R X T| = |R|*|T| 

 candidate keys:  
(di1, di2, … diα ) candidate key for R  
( sj1, sj2, … sjβ ) candidate key for T  

the union of the attributes form a candidate key for R X T 
–  positions i1, i2, … iα,  k+j1, k+j2 … k+jβ  of  R X T 

 foreign keys: for each of R and T are preserved using 
corresponding attributes of RXT.
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Naming attributes 

•  Usually give attributes names 
– SS#, city, age, … 

•  For cross-product, candidate key used 
positions in tuples to identify attributes 

•  Alternative naming: R.di  and T.sj 
– Mayors.city, Legislators.city 

•  What if R X R? 
– use positions of resulting tuples 
–  rename one of the copies of R 

Renaming ρ(Q(L), E)  
•  E a relational algebra expression 
•  Q a new relation name  
•  L is a list of mappings of attributes of E: 

–  mapping (old name → new name)   
–  mapping (attribute position → new name)  

•  resulting relation named Q  
–  is relation expressed by E 
–  attributes renamed according to mappings in list L 
–  Q can be omitted;  L can be empty 

•  All constraints on relation expressed by E are 
preserved with appropriate renaming of attributes. 

Using cross-product and renaming 
•  Cross-product allows coordination 

•  Example 
S:  (stuID, name)       R: (stuID, room#)  
find relation giving (name, room#) pairs: 

combine:  S X R 
coordinate: σS.stuID = R.stuID(S X R)  
get result:   πS.name, R.room# (σS.stuID = R.stuID(S X R) ) 

find pairs of names of roommates ? 

What does this expression find? 

Given relation R containing attribute value 

πvalue (R) – πR.value (σR.value <Q.value (R X ρ(Q,R)) ) 

[From Silberchatz et. al. Section 6.1.1.7] 

Formal definition 
•  A relational expression is 

–  A relation R in the database 
–  A constant relation 
–  For any relational expressions E1 and E2 

•  E1 U E2 
•  E1 – E2 
•  E1 X E2 
•  σP (E1) for predicate P on attributes of E1 
•  πS(E1) where S is a subset of attributes of E1 
•  ρ(Q(L),E1) where Q is a new relation name and L is a list of  
   (old name → new name) mappings of attributes of E1  

•  A query in the relational algebra is  
a relational expression 

Relational algebra: 
derived operations 

•  operations can be expressed as 
compositions of fundamental operations 

•  operations represent common patterns 

•  operations are very useful for clarity 
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Intersection R ∩ T

•  direct from set theory 

R ∩ T = R – (R – T) 
•  example 

students: (SS#, name, PUaddr, homeAddr, classYr) 
employees:  (SS#, name, addr, startYr) 
find student employees: 
πSS#, name, PUaddr(students) ∩ πSS#, name, addr(employees)  
or 
πSS#, name(students) ∩ πSS#, name(employees) 
or 
 πSS#(students) ∩ πSS#(employees)    ← safest 
or … 

Natural Join R ◊◊ T: motivation

•  Relations R and T 

•  Captures paradigm: 
combine:  R X T 
coordinate: σP(R X T)  
get result:   πS (σP(R X T) ) 

•  For relations that have one or more attributes that  
     share name and domain 
•  Need to refer to attributes shared by identical name 

•  Example: 
students: (SS#, name, PUaddr, homeAddr, classYr) 
employees:  (SS#, name, addr, startYr) 

Natural Join R ◊◊ T: definition

Let α(R) = the set of names of attributes in the schema for R 

•  Example: α(Students) = {SS#, name, PUaddr, homeAddr, classYr} 

Let α(T) = the set of names of attributes in the schema for T 
•  Example: α(Employees) = {SS#, name, addr, startYr} 

Let α(R) ∩ α(T) = {a1, a2, …, ak} 
•  Example: α(Students) ∩ α(Employees) = {SS#, name} 

R ◊◊ T = πα(R) U α(R) (σ                                    (R X T)) 

•  Students ◊◊ Employees  
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr) 

      Student tuple and Employee tuple agree on values of SS#, name  
=> tuple in join  
      fill in values of the other attributes of the pair 

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak 

Natural Join R ◊◊ T: remarks

for α(R) ∩ α(T) = {a1, a2, …, ak} 

R ◊◊ T = πα(R) U α(R) (σ                                    (R X T)) 
                set union 

# attributes in R ◊◊ T =  
# attrib. in R + # attrib. in T - # attrib. in α(R)∩α(T)  

•  duplicate attributes removed 
•  customary order in R ◊◊ T :  
     attributes of R, attributes of T not also in R 

each “=“ test not valid if not on same domain 
could weaken to compatible domains  

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak 

Division R÷Q – motivation 
•  Suggested by inverse of cross-product 

(R÷Q) X Q ⊆ R but may not equal R 

•  Find fragments of tuples of R that appear in R 
paired with all tuples of Q 

•  Example:  database of tennis 
–  relation Winners: (name, tournament, year) 
–  find all players who have won all tournaments 

represented in the Winners relation 

Division R÷Q – definition 
Given relations Q and R with attribute sets α(Q) and α(R), 
Such that 

–  α(Q) is a proper subset of α(R) 
–  corresponding attributes in α(R)∩α(Q) are on the same domain 

Define 
•  R÷Q is a relation with attribute set α(R÷Q) = α(R) - α(Q) 
•  A tuple is in R ÷ Q exactly when combining (concatenating) 

it with every tuple in Q yields a tuple in R 
–  R ÷ Q is a subset of π α(R) - α(Q)(R) 

•  not necessarily = 
–  attribute order not maintained => using names to identify attributes 
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Division R÷Q – example 
relation Winners: (name, tournament, year) 
find all players who have won all tournaments represented in 

the Winners relation 
1.  all tournaments: πtournament(Winners) 
2.  divide into something 

winners ÷ πtournament(Winners) :   (name, year) 
if tournaments are {US, French, Australian} need 

(S.Williams, US, 2008) 
(S.Williams, French, 2008) 
(S.Williams, Australian, 2008) 

to get S.Willaims as a result 
and result tuple is (S.Willaims, 2008)  

⇒  get win all tournaments in same year 
next try? 

Division R÷Q – example 
relation Winners: (name, tournament, year) 
find all players who have won all tournaments represented in 

the Winners relation 

1.  all tournaments: πtournament(Winners) 
2.  divide into π name,tournament(Winners) :   (name, tournament) 

 π name,tournament(Winners) ÷ πtournament(Winners) : (name) 

Gives desired result 

Division R÷Q – how derive 
R ÷ Q is expressed with basic relational operations as 

 πα(R) - α(Q)(R) - πα(R) - α(Q) ( (  πα(R) - α(Q) (R) X Q ) – R ) 
Huh? 

•  R ÷ Q is a subset of π α(R) - α(Q)(R) 
•  what’s in π α(R) - α(Q)(R) and not in R ÷ Q ? 

– a tuple that can’t be combined with every tuple in Q  
to get a tuple in R 

⇒  a combined tuple of πα(R) - α(Q) (R) X Q  that isn’t in R 
⇒  a tuple of πα(R) - α(Q) ( (  πα(R) - α(Q) (R) X Q ) – R ) 

Board Examples

Database: 

students: (SS#, name, PUaddr, homeAddr, classYr) 
employees:  (SS#, name, addr, startYr) 
jobs: (position, division, SS#, managerSS#) 

division foreign key referencing PUdivision 
study: (SS#, academic_dept., adviser) 

SS# foreign key referencing students 
PUdivision: (division_name, address, director) 

Board Example 1

saw find student employees: 
πSS#(students) ∩ πSS#(employees)    ← safest 

now:  find SS#, name, and classYr of all 
student employees 

Board Example 2 

find (student, manager) pairs where both are 
students - report SS#s 

Board Example 3


find names of all CS students working for the 
library (library a division) 

Board Example 4 

Find academic departments that have students 
working in all divisions 
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Relational algebra: 
extended operations 

•  operations cannot be expressed as compositions 
of fundamental operations 

•  operations allow arithmetic, counting, grouping, 
and extending relations 

•  part of database system language 
–  postpone to SQL discussion 

Summary 

•  Relational algebra operations provide 
foundation of query languages for 
database systems 

•  Derived operations, especially joins, 
simplify expressing queries 

•  Formal algebraic definition allow for 
provably correct simplifications, 
optimizations for query evaluation  


