COS 597A:
Principles of
Database and Information Systems

Relational model:
Relational algebra

Modeling access

* Have looked at modeling information as
data + structure

* Now: how model access to data in
relational model?

» Formal specification of access provides:
— Unambiguous queries
— Correctness of results
— Expressiveness of query languages

Queries

» A query is a mapping from a set of relations to a
relation
Query: relations — relation

» Can derive schema of result from schemas of
input relations

» Can deduce constraints on resulting relation that
must hold for any input relations

» Can identify properties of result relation

Relational query languages

« Two formal relational languages to describe mapping
— Relational algebra
» Procedural — lists operations to form query result
— Relational calculus
» Declarative — describes results of query

« Equivalent expressiveness
» Each has strong points for usefulness
— DB system query languages (e.g. SQL)
take best of both

begin with Relational Algebra

Basic operations of relational algebra:

1. Selection o :select a subset of tuples from a relation
according to a condition

2. Projection 1 :delete unwanted attributes (columns)
from tuples of a relation

3. cross product X : combine all pairs of tuples of two
relations by making tuples with all attributes of both

4. Set difference — :* tuples in first relation and not in
second

5. union U:* tuples in first relation or second relation
6. Renaming p: to deal with name conflicts

* Set operations: D, X D, ... X D, of two relations must agree

Selection op(R)

* relation R
* predicate P on attributes of R
* resulting relation

—schema same as R
— contains those tuples of R that satisfy P

— candidate keys and foreign keys in R are
preserved
« eliminating tuples doesn’t cause violations
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Selection Example

Students: (name, address, gender, age, grad yr)

Instance: name address | gender |age grad yr
Joe ... NY |M 24 2
Sally . F 25 3
Joe .. NJ M 23 2
Jan F 27 4

Oage < 25 (Students): (name, address, gender, age, grad yr)

name address | gender |age grad yr
Joe .. NY|M 24 2
Joe .. NJ|M 23 2

Projection 11g(R)

« relation R
» S a list of attributes from R - projected attributes
« resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
— relations are sets = duplicates are removed
« In practice, usually not removed unless explicitly requested

— if {fc:rr;(iigi;ate key projected, constraint preserved

— if no candidate key is projected, key?

Projection 11g(R)

« relation R
» S allist of attributes from R - projected attributes
* resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
— relations are sets = duplicates are removed
« In practice, usually not removed unless explicitly requested

—if cant_jidate key projected, constraint preserved
foreign
— if no candidate key is projected,

only candidate key may be all attributes in S
* (set model)

Projection Example

Students: (name, address, gender, age, grad yr)
Instance:

name |addr gender |age |grad yr

Joe ..NY |M 24 |2

Sally F 25 |3

Joe .. NJ |M 23 |2

Jan F 27 |4
name |grad yr

Trname, grad yr(StUdents): (name, grad yr) Joe |2
Sally |3
Jan |4

Composing operators

* An algebra
— composition works as in other algebras
— are properties to use to re-order operations

« Example

* Thame, age (Oage <25 (StUdentS)): name | age
Joe |24
Joe |23

0-age <25 (Trname, age (StUdents))?

Set operations

« forrelations R, SC D, XD, X ... X D
— where D,; is the domain for the it" attribute
— i.e. Rand S on same universe
* Union RUSC D;XD,X... XDy
— contains any tuple in either R or S
— formal model removes duplicates
— candidate keys ?
— foreign keys?

» Setdifference  R-SC D; XD, X ... XDy
- includes all tuples in R that are not in S
— constraints left as an exercise
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Example for Union

« relations:
mayors: (name, street address, city, party)
legislators: (name, street address, city, district, party)

mayors Xlegislators? not same universe
redefine:

mayors: (name, street address, city, term, party)
If “term”, “district” both integers

= same domain => can union

candidate key of mayors U legislators?

Example for Union

« relations:
mayors: (name, street address, city, term, party)
legislators: (name, street address, city, district, party)
» candidate key of mayors U legislators?
not (city, district)
( Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term
( Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston

> foreign key of mayors U legislators?
— corresponding components need not be the same attribute
“term” versus “district”

CORRECTION

Candidate keys for union

| suggested if both R and S have same candidate
key then will be candidate key for RU S. NO!

Generally, one key value determines two tuples —
one from S and one from R.

Example: gs_alum: (ss#, dept)

ugrad_alum: (ss#, dept)
ss# of alum who was both ugrad and grad but in different
departments will appear in two tuples of

gs_alum U ugrad_alum

Set operations revisited

« forrelations R, SC D, XD, X ... X D
— where D; is the domain for the it" attribute
— i.e. Rand S on same universe
* Union RUSC D;XD,X... XDy
— contains any tuple in either R or S
— formal model removes duplicates
> candidate keys are not generally preserved

> a foreign key is preserved if it is a foreign key for both
R and S using corresponding attributes and
referencing the same relation

+ Setdifference R-SC D; XD, X ... XDy
- includes all tuples in R that are not in S
— constraints left as an exercise

Cross product RX T

» Relations
—-RCD;XD,X ... XDy
-TC S; XS, X ... XS,

» Resulting relation:
—~RXTCD,XD,X...XD, XS, XS, X... XS,
—tuple (d;,dy,... ,de,S;,8,,...,8,) ERXT

if and only if

(dy,dy,...,d)eRand (sy, 8, ... ,5,) €T
— |RXT| ? |R|denotes the number of tuples in R
— candidate keys?
— foreign keys?

Cross product RX T: keys

* Resulting relation:
— RXTCD;XD,X...XD XS, XS, X ...XS,,
— tuple (dy,dy,...,d,S1,S,...,5,) ERXT

if and only if
(dy,dy,...,d¢)eRand (sy,8p ..., 8,) €T
— [RXT| = [RJ"[T]

> candidate keys:
diy, dip, ... dig ) candidate key for R

(
d( Sjt, S, -+ Sjg ) candidate key for T

the union of the attributes form a candidate key for R X T
— positions i1, i2, ... ia, k+j1, k+j2 ... k+jB of RXT
> foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.
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Naming attributes

» Usually give attributes names
— SS#, city, age, ...
» For cross-product, candidate key used
positions in tuples to identify attributes
* Alternative naming: R.d; and T.s;
— Mayors.city, Legislators.city
* Whatif R X R?
— use positions of resulting tuples
—rename one of the copies of R

Renaming p(Q(L), E)

» E arelational algebra expression
* Q a new relation name
L is a list of mappings of attributes of E:
— mapping (old name — new name)
— mapping (attribute position — new name)
* resulting relation named Q
— is relation expressed by E
— attributes renamed according to mappings in list L
— Q can be omitted; L can be empty
« All constraints on relation expressed by E are

preserved with appropriate renaming of attributes.

Using cross-product and renaming
» Cross-product allows coordination

» Example
S: (stulD, name) R: (stulD, room#)
find relation giving (name, room#) pairs:
combine: S XR
coordinate: Og gyip - R stuin(S X R)
get result: TS name, R.room# (OS stulD =R stulD(S X R) )

find pairs of names of roommates ?

What does this expression find?

Given relation R containing attribute value

Myaie (R) = TR value (OR.value <Q.value (R X p(Q1R)) )

[From Silberchatz et. al. Section 6.1.1.7]

Formal definition

* A relational expression is

— Arelation R in the database

— A constant relation

— For any relational expressions E; and E,
« E,UE,
« E-E
+ E;XE,
* 0 (E,) for predicate P on attributes of E,
« mg(E,) where S is a subset of attributes of E,
* p(Q(L),E;) where Q is a new relation name and L is a list of

(old name — new name) mappings of attributes of E,

» A query in the relational algebra is
a relational expression

Relational algebra:
derived operations

operations can be expressed as
compositions of fundamental operations

operations represent common patterns

operations are very useful for clarity
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Intersection Rn T

« direct from set theory
RNT=R-(R-T)
» example
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
find student employees:
TTSS#, name, PUadar(StUDENtS) N Tgsy name, agar(€Mployees)
or
Tlss#, name(Students) N Tsgy name(€Mployees)
or

Trggx(students) N Tggu(employees) <« safest
or...

Natural Join R 00 T: motivation
Relations Rand T

» Captures paradigm:
combine: RXT
coordinate: op(R X T)
getresult: 15 (0p(RXT))

« For relations that have one or more attributes that
share name and domain

» Need to refer to attributes shared by identicalny

v

« Example:
students: (SS#, name \PUaddr, homeAddr, classYr)
employees; (SS#, name)addr, startYr)

Natural Join R 00 T: definition

Let a(R) = the set of names of attributes in the schema for R
« Example: a(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let a(T) = the set of names of attributes in the schema for T
+ Example: a(Employees) = {SS#, name, addr, startYr}

Leta(R) N a(T) ={ay, ay, ..., a}
+ Example: a(Students) N a(Employees) = {SS#, name}

ROO T =Tyg) ya) (O (RXT))

R.a,;=Ta;, R.a,=Ta,, ..., Ra=T.a,
« Students 00 Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)
Student tuple and Employee tuple agree on values of SS#, name
=> tuple in join
fillin values of the other attributes of the pair

Natural Join R 0¢ T: remarks
for a(R) N o(T) = {ay, a,, ..., 3}

RO T =11

set union

(RXT))

# attributes inROO T =
# attrib. in R + # attrib. in T - # attrib. in a(R)Na(T)
« duplicate attributes removed
« customary orderin R0 T :
attributes of R, attributes of T not also in R

each “=" test not valid if not on same domain
could weaken to compatible domains

Division R+Q — motivation

» Suggested by inverse of cross-product
(R+Q) X Q € R but may not equal R

 Find fragments of tuples of R that appear in R
paired with all tuples of Q

+ Example: database of tennis
— relation Winners: (name, tournament, year)

— find all players who have won all tournaments
represented in the Winners relation

Division R+Q — definition

Given relations Q and R with attribute sets a(Q) and a(R),
Such that

— a(Q) is a proper subset of a(R)

— corresponding attributes in a(R)Na(Q) are on the same domain

Define
* R+Q s a relation with attribute set a(R+Q) = a(R) - a(Q)
« Atupleisin R + Q exactly when combining (

it with every tuple in Q yields a tuple in R

— R+ Qis asubset of T g, . q(q)(R)
* not necessarily =
— attribute order not maintained => using names to identify attributes
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Division R+Q — example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in
the Winners relation
1. all tournaments: Ty, mamen(Winners)
2. divide into something
winners + T namen(Winners) : - (name, year)
if tournaments are {US, French, Australian} need
(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)
to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)
= get win all tournaments in same year

next try?

Division R+Q — example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation

1. all tournaments: T nament(Winners)
2. divide into TT ;me tourament(VVinners) : - (name, tournament)

T ame tournament(WiNNErs) * Ty mamen(Winners) : (name)

Gives desired result

Division R+Q — how derive

R + Q is expressed with basic relational operations as
na(R)»a(Q)(R) - "u(R)-u(Q)( ( Ty(R) - a(Q) (R)XQ)-R)

* R+Qis a subset of T 4, . 4(q)(R)
* what's in T g _4q(R) and notinR + Q ?

—a tuple that can’t be combined with every tuple in Q
togetatuplein R

=> a combined tuple of g, _4q) (R) X Q thatisn'tin R
= a tuple of Tyr)_ o) ( ( Tar)-a@) (R) XQ)-R)

Board Examples

Database:

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
division foreign key referencing PUdivision
study: (SS#, academic_dept., adviser)
SS# foreign key referencing students
PUdivision: (division_name, address, director)

Board Example 1

saw find student employees:
Tggx(students) N mggu(employees) « safest

now: find SS#, name, and classYr of all
student employees
Board Example 2

find (student, manager) pairs where both are
students - report SS#s

Board Example 3
find names of all CS students working for the
library (library a division)
Board Example 4

Find academic departments that have students
working in all divisions
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Relational algebra:
extended operations

operations cannot be expressed as compositions
of fundamental operations

operations allow arithmetic, counting, grouping,
and extending relations

part of database system language
— postpone to SQL discussion

Summary

 Relational algebra operations provide
foundation of query languages for
database systems

+ Derived operations, especially joins,
simplify expressing queries

» Formal algebraic definition allow for
provably correct simplifications,
optimizations for query evaluation
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