COS 597A:
Principles of
Database and Information Systems

Relational model:
Relational algebra

Modeling access

* Have looked at modeling information as
data + structure

* Now: how model access to data in
relational model?

» Formal specification of access provides:
— Unambiguous queries
— Correctness of results
— Expressiveness of query languages

Queries

» A query is a mapping from a set of relations to a
relation
Query: relations — relation

» Can derive schema of result from schemas of
input relations

» Can deduce constraints on resulting relation that
must hold for any input relations

» Can identify properties of result relation

Relational query languages

« Two formal relational languages to describe mapping
— Relational algebra
» Procedural — lists operations to form query result
— Relational calculus
» Declarative — describes results of query

« Equivalent expressiveness
» Each has strong points for usefulness
— DB system query languages (e.g. SQL)
take best of both

begin with Relational Algebra

Basic operations of relational algebra:

1. Selection o :select a subset of tuples from a relation
according to a condition

2. Projection 1 :delete unwanted attributes (columns)
from tuples of a relation

3. cross product X : combine all pairs of tuples of two
relations by making tuples with all attributes of both

4. Set difference — :* tuples in first relation and not in
second

5. union U:* tuples in first relation or second relation
6. Renaming p: to deal with name conflicts

* Set operations: D, X D, ... X D, of two relations must agree

Selection op(R)

* relation R
* predicate P on attributes of R
* resulting relation

—schema same as R
— contains those tuples of R that satisfy P

— candidate keys and foreign keys in R are
preserved
« eliminating tuples doesn’t cause violations

10/4/11

Selection Example

Students: (name, address, gender, age, grad yr)

Instance: name address | gender |age grad yr
Joe ... NY |M 24 2
Sally . F 25 3
Joe .. NJ M 23 2
Jan F 27 4

Oage < 25 (Students): (name, address, gender, age, grad yr)

name address | gender |age grad yr
Joe .. NY|M 24 2
Joe .. NJ|M 23 2

Projection 11g(R)

« relation R
» S a list of attributes from R - projected attributes
« resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
— relations are sets = duplicates are removed
« In practice, usually not removed unless explicitly requested

— if {fc:rr;(iigi;ate key projected, constraint preserved

— if no candidate key is projected, key?

Projection 11g(R)

« relation R
» S allist of attributes from R - projected attributes
* resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
— relations are sets = duplicates are removed
« In practice, usually not removed unless explicitly requested

—if cant_jidate key projected, constraint preserved
foreign
— if no candidate key is projected,

only candidate key may be all attributes in S
* (set model)

Projection Example

Students: (name, address, gender, age, grad yr)
Instance:

name |addr gender |age |grad yr

Joe ..NY |M 24 |2

Sally F 25 |3

Joe .. NJ |M 23 |2

Jan F 27 |4
name |grad yr

Trname, grad yr(StUdents): (name, grad yr) Joe |2
Sally |3
Jan |4

Composing operators

* An algebra
— composition works as in other algebras
— are properties to use to re-order operations

« Example

* Thame, age (Oage <25 (StUdentS)): name | age
Joe |24
Joe |23

0-age <25 (Trname, age (StUdents))?

Set operations

« forrelations R, SC D, XD, X ... X D
— where D,; is the domain for the it" attribute
— i.e. Rand S on same universe
* Union RUSC D;XD,X... XDy
— contains any tuple in either R or S
— formal model removes duplicates
— candidate keys ?
— foreign keys?

» Setdifference R-SC D; XD, X ... XDy
- includes all tuples in R that are not in S
— constraints left as an exercise

10/4/11

Example for Union

« relations:
mayors: (name, street address, city, party)
legislators: (name, street address, city, district, party)

mayors Xlegislators? not same universe
redefine:

mayors: (name, street address, city, term, party)
If “term”, “district” both integers

= same domain => can union

candidate key of mayors U legislators?

Example for Union

« relations:
mayors: (name, street address, city, term, party)
legislators: (name, street address, city, district, party)
» candidate key of mayors U legislators?
not (city, district)
(Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term
(Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston

> foreign key of mayors U legislators?
— corresponding components need not be the same attribute
“term” versus “district”

CORRECTION

Candidate keys for union

| suggested if both R and S have same candidate
key then will be candidate key for RU S. NO!

Generally, one key value determines two tuples —
one from S and one from R.

Example: gs_alum: (ss#, dept)

ugrad_alum: (ss#, dept)
ss# of alum who was both ugrad and grad but in different
departments will appear in two tuples of

gs_alum U ugrad_alum

Set operations revisited

« forrelations R, SC D, XD, X ... X D
— where D; is the domain for the it" attribute
— i.e. Rand S on same universe
* Union RUSC D;XD,X... XDy
— contains any tuple in either R or S
— formal model removes duplicates
> candidate keys are not generally preserved

> a foreign key is preserved if it is a foreign key for both
R and S using corresponding attributes and
referencing the same relation

+ Setdifference R-SC D; XD, X ... XDy
- includes all tuples in R that are not in S
— constraints left as an exercise

Cross product RX T

» Relations
—-RCD;XD,X ... XDy
-TC S; XS, X ... XS,

» Resulting relation:
—~RXTCD,XD,X...XD, XS, XS, X... XS,
—tuple (d;,dy,... ,de,S;,8,,...,8,) ERXT

if and only if

(dy,dy,...,d)eRand (sy, 8, ... ,5,) €T
— |RXT| ? |R|denotes the number of tuples in R
— candidate keys?
— foreign keys?

Cross product RX T: keys

* Resulting relation:
— RXTCD;XD,X...XD XS, XS, X ...XS,,
— tuple (dy,dy,...,d,S1,S,...,5,) ERXT

if and only if
(dy,dy,...,d¢)eRand (sy,8p ..., 8,) €T
— [RXT| = [RJ"[T]

> candidate keys:
diy, dip, ... dig) candidate key for R

(
d(Sjt, S, -+ Sjg) candidate key for T

the union of the attributes form a candidate key for R X T
— positions i1, i2, ... ia, k+j1, k+j2 ... k+jB of RXT
> foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.

10/4/11

Naming attributes

» Usually give attributes names
— SS#, city, age, ...
» For cross-product, candidate key used
positions in tuples to identify attributes
* Alternative naming: R.d; and T.s;
— Mayors.city, Legislators.city
* Whatif R X R?
— use positions of resulting tuples
—rename one of the copies of R

Renaming p(Q(L), E)

» E arelational algebra expression
* Q a new relation name
L is a list of mappings of attributes of E:
— mapping (old name — new name)
— mapping (attribute position — new name)
* resulting relation named Q
— is relation expressed by E
— attributes renamed according to mappings in list L
— Q can be omitted; L can be empty
« All constraints on relation expressed by E are

preserved with appropriate renaming of attributes.

Using cross-product and renaming
» Cross-product allows coordination

» Example
S: (stulD, name) R: (stulD, room#)
find relation giving (name, room#) pairs:
combine: S XR
coordinate: Og gyip - R stuin(S X R)
get result: TS name, R.room# (OS stulD =R stulD(S X R))

find pairs of names of roommates ?

What does this expression find?

Given relation R containing attribute value

Myaie (R) = TR value (OR.value <Q.value (R X p(Q1R)))

[From Silberchatz et. al. Section 6.1.1.7]

Formal definition

* A relational expression is

— Arelation R in the database

— A constant relation

— For any relational expressions E; and E,
« E,UE,
« E-E
+ E;XE,
* 0 (E,) for predicate P on attributes of E,
« mg(E,) where S is a subset of attributes of E,
* p(Q(L),E;) where Q is a new relation name and L is a list of

(old name — new name) mappings of attributes of E,

» A query in the relational algebra is
a relational expression

Relational algebra:
derived operations

operations can be expressed as
compositions of fundamental operations

operations represent common patterns

operations are very useful for clarity

10/4/11

Intersection Rn T

« direct from set theory
RNT=R-(R-T)
» example
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
find student employees:
TTSS#, name, PUadar(StUDENtS) N Tgsy name, agar(€Mployees)
or
Tlss#, name(Students) N Tsgy name(€Mployees)
or

Trggx(students) N Tggu(employees) <« safest
or...

Natural Join R 00 T: motivation
Relations Rand T

» Captures paradigm:
combine: RXT
coordinate: op(R X T)
getresult: 15 (0p(RXT))

« For relations that have one or more attributes that
share name and domain

» Need to refer to attributes shared by identicalny

v

« Example:
students: (SS#, name \PUaddr, homeAddr, classYr)
employees; (SS#, name)addr, startYr)

Natural Join R 00 T: definition

Let a(R) = the set of names of attributes in the schema for R
« Example: a(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let a(T) = the set of names of attributes in the schema for T
+ Example: a(Employees) = {SS#, name, addr, startYr}

Leta(R) N a(T) ={ay, ay, ..., a}
+ Example: a(Students) N a(Employees) = {SS#, name}

ROO T =Tyg) ya) (O (RXT))

R.a,;=Ta;, R.a,=Ta,, ..., Ra=T.a,
« Students 00 Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)
Student tuple and Employee tuple agree on values of SS#, name
=> tuple in join
fillin values of the other attributes of the pair

Natural Join R 0¢ T: remarks
for a(R) N o(T) = {ay, a,, ..., 3}

RO T =11

set union

(RXT))

attributes inROO T =
attrib. in R + # attrib. in T - # attrib. in a(R)Na(T)
« duplicate attributes removed
« customary orderin R0 T :
attributes of R, attributes of T not also in R

each “=" test not valid if not on same domain
could weaken to compatible domains

Division R+Q — motivation

» Suggested by inverse of cross-product
(R+Q) X Q € R but may not equal R

 Find fragments of tuples of R that appear in R
paired with all tuples of Q

+ Example: database of tennis
— relation Winners: (name, tournament, year)

— find all players who have won all tournaments
represented in the Winners relation

Division R+Q — definition

Given relations Q and R with attribute sets a(Q) and a(R),
Such that

— a(Q) is a proper subset of a(R)

— corresponding attributes in a(R)Na(Q) are on the same domain

Define
* R+Q s a relation with attribute set a(R+Q) = a(R) - a(Q)
« Atupleisin R + Q exactly when combining (

it with every tuple in Q yields a tuple in R

— R+ Qis asubset of T g, . q(q)(R)
* not necessarily =
— attribute order not maintained => using names to identify attributes

10/4/11

Division R+Q — example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in
the Winners relation
1. all tournaments: Ty, mamen(Winners)
2. divide into something
winners + T namen(Winners) : - (name, year)
if tournaments are {US, French, Australian} need
(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)
to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)
= get win all tournaments in same year

next try?

Division R+Q — example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation

1. all tournaments: T nament(Winners)
2. divide into TT ;me tourament(VVinners) : - (name, tournament)

T ame tournament(WiNNErs) * Ty mamen(Winners) : (name)

Gives desired result

Division R+Q — how derive

R + Q is expressed with basic relational operations as
na(R)»a(Q)(R) - "u(R)-u(Q)((Ty(R) - a(Q) (R)XQ)-R)

* R+Qis a subset of T 4, . 4(q)(R)
* what's in T g _4q(R) and notinR + Q ?

—a tuple that can’t be combined with every tuple in Q
togetatuplein R

=> a combined tuple of g, _4q) (R) X Q thatisn'tin R
= a tuple of Tyr)_ o) ((Tar)-a@) (R) XQ)-R)

Board Examples

Database:

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
division foreign key referencing PUdivision
study: (SS#, academic_dept., adviser)
SS# foreign key referencing students
PUdivision: (division_name, address, director)

Board Example 1

saw find student employees:
Tggx(students) N mggu(employees) « safest

now: find SS#, name, and classYr of all
student employees
Board Example 2

find (student, manager) pairs where both are
students - report SS#s

Board Example 3
find names of all CS students working for the
library (library a division)
Board Example 4

Find academic departments that have students
working in all divisions

10/4/11

Relational algebra:
extended operations

operations cannot be expressed as compositions
of fundamental operations

operations allow arithmetic, counting, grouping,
and extending relations

part of database system language
— postpone to SQL discussion

Summary

 Relational algebra operations provide
foundation of query languages for
database systems

+ Derived operations, especially joins,
simplify expressing queries

» Formal algebraic definition allow for
provably correct simplifications,
optimizations for query evaluation

10/4/11

