
10/4/11

1

COS 597A:
Principles of

Database and Information Systems

Relational model:
Relational algebra

Modeling access

•  Have looked at modeling information as
data + structure

•  Now: how model access to data in
relational model?

•  Formal specification of access provides:
– Unambiguous queries
– Correctness of results
– Expressiveness of query languages

Queries

•  A query is a mapping from a set of relations to a
relation

Query: relations → relation

•  Can derive schema of result from schemas of
input relations

•  Can deduce constraints on resulting relation that
must hold for any input relations

•  Can identify properties of result relation

Relational query languages
•  Two formal relational languages to describe mapping

–  Relational algebra
•  Procedural – lists operations to form query result

–  Relational calculus
•  Declarative – describes results of query

•  Equivalent expressiveness
•  Each has strong points for usefulness

–  DB system query languages (e.g. SQL)
take best of both

begin with Relational Algebra
Basic operations of relational algebra:
1.  Selection σ :select a subset of tuples from a relation

according to a condition
2.  Projection π :delete unwanted attributes (columns)

from tuples of a relation
3.  cross product X : combine all pairs of tuples of two

relations by making tuples with all attributes of both
4.  Set difference – :* tuples in first relation and not in

second
5.  union U:* tuples in first relation or second relation
6.  Renaming ρ: to deal with name conflicts

* Set operations: D1 X D2 … X Dk of two relations must agree

Selection σP(R)

•  relation R
•  predicate P on attributes of R
•  resulting relation

– schema same as R
– contains those tuples of R that satisfy P
– candidate keys and foreign keys in R are

preserved
•  eliminating tuples doesn’t cause violations

10/4/11

2

Selection Example
Students: (name, address, gender, age, grad yr)
Instance:

σage < 25 (Students): (name, address, gender, age, grad yr)

name address gender age grad yr

Joe … NY M 24 2

Sally … F 25 3

Joe … NJ M 23 2

Jan … F 27 4

name address gender age grad yr
Joe … NY M 24 2

Joe … NJ M 23 2

Projection πS(R)
•  relation R
•  S a list of attributes from R - projected attributes
•  resulting relation:

–  scheme is attributes in S
–  contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
–  relations are sets  duplicates are removed

•  In practice, usually not removed unless explicitly requested

–  if key projected, constraint preserved

–  if no candidate key is projected, key?

candidate
foreign

Projection πS(R)
•  relation R
•  S a list of attributes from R - projected attributes
•  resulting relation:

–  scheme is attributes in S
–  contains all tuples formed by taking a tuple from R

and keeping only the attributes listed in S
–  relations are sets  duplicates are removed

•  In practice, usually not removed unless explicitly requested

–  if key projected, constraint preserved

–  if no candidate key is projected,
 only candidate key may be all attributes in S

•  (set model)

candidate
foreign

Projection Example
Students: (name, address, gender, age, grad yr)
Instance:

πname, grad yr(Students): (name, grad yr)

name addr gender age grad yr

Joe … NY M 24 2

Sally … F 25 3

Joe … NJ M 23 2

Jan … F 27 4
name grad yr

Joe 2

Sally 3

Jan 4

Composing operators

•  An algebra
– composition works as in other algebras
– are properties to use to re-order operations

•  Example
•  πname, age (σage < 25 (Students)):

σage < 25 (πname, age (Students))?

name age

Joe 24

Joe 23

Set operations
•  for relations R, S ⊆ D1 X D2 X … X Dk

–  where Di is the domain for the ith attribute
–  i.e. R and S on same universe

•  Union RUS ⊆ D1 X D2 X … X Dk:
–  contains any tuple in either R or S
–  formal model removes duplicates
–  candidate keys ?
–  foreign keys?

•  Set difference R-S ⊆ D1 X D2 X … X Dk:
–  includes all tuples in R that are not in S
–  constraints left as an exercise

10/4/11

3

Example for Union
•  relations:

mayors: (name, street address, city, party)
legislators: (name, street address, city, district, party)

mayors U legislators? not same universe
redefine:

mayors: (name, street address, city, term, party)
If “term”, “district” both integers

⇒  same domain ⇒ can union

candidate key of mayors U legislators?

X

Example for Union
•  relations:

 mayors: (name, street address, city, term, party)
 legislators: (name, street address, city, district, party)

•  candidate key of mayors U legislators?
not (city, district)

(Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term

(Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston

 foreign key of mayors U legislators?
–  corresponding components need not be the same attribute

“term” versus “district”

CORRECTION
Candidate keys for union

   I suggested if both R and S have same candidate
key then will be candidate key for R U S. NO!

   Generally, one key value determines two tuples –
one from S and one from R.

   Example: gs_alum: (ss#, dept)
   ugrad_alum: (ss#, dept)
   ss# of alum who was both ugrad and grad but in different

departments will appear in two tuples of
   gs_alum U ugrad_alum

Set operations revisited
•  for relations R, S ⊆ D1 X D2 X … X Dk

–  where Di is the domain for the ith attribute
–  i.e. R and S on same universe

•  Union RUS ⊆ D1 X D2 X … X Dk:
–  contains any tuple in either R or S
–  formal model removes duplicates
  candidate keys are not generally preserved
  a foreign key is preserved if it is a foreign key for both

R and S using corresponding attributes and
referencing the same relation

•  Set difference R-S ⊆ D1 X D2 X … X Dk:
–  includes all tuples in R that are not in S
–  constraints left as an exercise

Cross product R X T

•  Relations

–  R ⊆ D1 X D2 X … X Dk
–  T ⊆ S1 X S2 X … X Sm

•  Resulting relation:
–  R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm
–  tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm) ε R X T
 if and only if
 (d1 , d2 ,… , dk) ε R and (s1, s2, … , sm) ε T
–  |R X T| ? |R| denotes the number of tuples in R

–  candidate keys?
–  foreign keys?

Cross product R X T: keys

•  Resulting relation:

–  R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm
–  tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm) ε R X T
 if and only if
 (d1 , d2 ,… , dk) ε R and (s1, s2, … , sm) ε T
–  |R X T| = |R|*|T|

 candidate keys:
(di1, di2, … diα) candidate key for R
(sj1, sj2, … sjβ) candidate key for T

the union of the attributes form a candidate key for R X T
–  positions i1, i2, … iα, k+j1, k+j2 … k+jβ of R X T

 foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.

10/4/11

4

Naming attributes

•  Usually give attributes names
– SS#, city, age, …

•  For cross-product, candidate key used
positions in tuples to identify attributes

•  Alternative naming: R.di and T.sj
– Mayors.city, Legislators.city

•  What if R X R?
– use positions of resulting tuples
–  rename one of the copies of R

Renaming ρ(Q(L), E)
•  E a relational algebra expression
•  Q a new relation name
•  L is a list of mappings of attributes of E:

–  mapping (old name → new name)
–  mapping (attribute position → new name)

•  resulting relation named Q
–  is relation expressed by E
–  attributes renamed according to mappings in list L
–  Q can be omitted; L can be empty

•  All constraints on relation expressed by E are
preserved with appropriate renaming of attributes.

Using cross-product and renaming
•  Cross-product allows coordination

•  Example
S: (stuID, name) R: (stuID, room#)
find relation giving (name, room#) pairs:

combine: S X R
coordinate: σS.stuID = R.stuID(S X R)
get result: πS.name, R.room# (σS.stuID = R.stuID(S X R))

find pairs of names of roommates ?

What does this expression find?

Given relation R containing attribute value

πvalue (R) – πR.value (σR.value <Q.value (R X ρ(Q,R)))

[From Silberchatz et. al. Section 6.1.1.7]

Formal definition
•  A relational expression is

–  A relation R in the database
–  A constant relation
–  For any relational expressions E1 and E2

•  E1 U E2
•  E1 – E2
•  E1 X E2
•  σP (E1) for predicate P on attributes of E1
•  πS(E1) where S is a subset of attributes of E1
•  ρ(Q(L),E1) where Q is a new relation name and L is a list of
 (old name → new name) mappings of attributes of E1

•  A query in the relational algebra is
a relational expression

Relational algebra:
derived operations

•  operations can be expressed as
compositions of fundamental operations

•  operations represent common patterns

•  operations are very useful for clarity

10/4/11

5

Intersection R ∩ T

•  direct from set theory

R ∩ T = R – (R – T)
•  example

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
find student employees:
πSS#, name, PUaddr(students) ∩ πSS#, name, addr(employees)
or
πSS#, name(students) ∩ πSS#, name(employees)
or
 πSS#(students) ∩ πSS#(employees) ← safest
or …

Natural Join R ◊◊ T: motivation

•  Relations R and T

•  Captures paradigm:
combine: R X T
coordinate: σP(R X T)
get result: πS (σP(R X T))

•  For relations that have one or more attributes that
 share name and domain
•  Need to refer to attributes shared by identical name

•  Example:
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)

Natural Join R ◊◊ T: definition

Let α(R) = the set of names of attributes in the schema for R

•  Example: α(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let α(T) = the set of names of attributes in the schema for T
•  Example: α(Employees) = {SS#, name, addr, startYr}

Let α(R) ∩ α(T) = {a1, a2, …, ak}
•  Example: α(Students) ∩ α(Employees) = {SS#, name}

R ◊◊ T = πα(R) U α(R) (σ (R X T))

•  Students ◊◊ Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)

 Student tuple and Employee tuple agree on values of SS#, name
=> tuple in join
 fill in values of the other attributes of the pair

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak

Natural Join R ◊◊ T: remarks

for α(R) ∩ α(T) = {a1, a2, …, ak}

R ◊◊ T = πα(R) U α(R) (σ (R X T))
 set union

attributes in R ◊◊ T =
attrib. in R + # attrib. in T - # attrib. in α(R)∩α(T)

•  duplicate attributes removed
•  customary order in R ◊◊ T :
 attributes of R, attributes of T not also in R

each “=“ test not valid if not on same domain
could weaken to compatible domains

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak

Division R÷Q – motivation
•  Suggested by inverse of cross-product

(R÷Q) X Q ⊆ R but may not equal R

•  Find fragments of tuples of R that appear in R
paired with all tuples of Q

•  Example: database of tennis
–  relation Winners: (name, tournament, year)
–  find all players who have won all tournaments

represented in the Winners relation

Division R÷Q – definition
Given relations Q and R with attribute sets α(Q) and α(R),
Such that

–  α(Q) is a proper subset of α(R)
–  corresponding attributes in α(R)∩α(Q) are on the same domain

Define
•  R÷Q is a relation with attribute set α(R÷Q) = α(R) - α(Q)
•  A tuple is in R ÷ Q exactly when combining (concatenating)

it with every tuple in Q yields a tuple in R
–  R ÷ Q is a subset of π α(R) - α(Q)(R)

•  not necessarily =
–  attribute order not maintained => using names to identify attributes

10/4/11

6

Division R÷Q – example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation
1.  all tournaments: πtournament(Winners)
2.  divide into something

winners ÷ πtournament(Winners) : (name, year)
if tournaments are {US, French, Australian} need

(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)

to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)

⇒  get win all tournaments in same year
next try?

Division R÷Q – example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation

1.  all tournaments: πtournament(Winners)
2.  divide into π name,tournament(Winners) : (name, tournament)

 π name,tournament(Winners) ÷ πtournament(Winners) : (name)

Gives desired result

Division R÷Q – how derive
R ÷ Q is expressed with basic relational operations as

 πα(R) - α(Q)(R) - πα(R) - α(Q) ((πα(R) - α(Q) (R) X Q) – R)
Huh?

•  R ÷ Q is a subset of π α(R) - α(Q)(R)
•  what’s in π α(R) - α(Q)(R) and not in R ÷ Q ?

– a tuple that can’t be combined with every tuple in Q
to get a tuple in R

⇒  a combined tuple of πα(R) - α(Q) (R) X Q that isn’t in R
⇒  a tuple of πα(R) - α(Q) ((πα(R) - α(Q) (R) X Q) – R)

Board Examples

Database:

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)

division foreign key referencing PUdivision
study: (SS#, academic_dept., adviser)

SS# foreign key referencing students
PUdivision: (division_name, address, director)

Board Example 1

saw find student employees:
πSS#(students) ∩ πSS#(employees) ← safest

now: find SS#, name, and classYr of all
student employees

Board Example 2

find (student, manager) pairs where both are
students - report SS#s

Board Example 3

find names of all CS students working for the
library (library a division)

Board Example 4

Find academic departments that have students
working in all divisions

10/4/11

7

Relational algebra:
extended operations

•  operations cannot be expressed as compositions
of fundamental operations

•  operations allow arithmetic, counting, grouping,
and extending relations

•  part of database system language
–  postpone to SQL discussion

Summary

•  Relational algebra operations provide
foundation of query languages for
database systems

•  Derived operations, especially joins,
simplify expressing queries

•  Formal algebraic definition allow for
provably correct simplifications,
optimizations for query evaluation

