COS 597A:

Principles of Database and Information Systems

Professor Andrea LaPaugh

What makes a database system?

- Large integrated collection of data
- Uniform access/modifcation mechanisms
 Rich query language
- Model of data organization

 Levels of abstraction

Database systems ubiquitous Behind many Web pages

What DB systems provide?

*like abstract data types

but large: disk vs memory

- Uniform interface*
- Uniform models of data*
- Data integrity
- Data security
- Data reliability
- Concurrency
- Efficiency

Is overhead

Some Current Database Models

- Entity relationship model
 - External "information" viewconceptual
- Relational model
 - Foundation of organization and access
- XML model
 - Semi-structured versus fully structured
 Large amounts info within one element
 - Databases meet Web

Relational Model

Dominant DB model

- Formal underpinnings
- SQL most widely used DB language
 'Q' is for query

Historical staying power Introduced 1970 by Edgar Codd What his motivations? How do they compare to modern concerns? Flat model

vs older hierarchical and newer XML tree models

Levels of Abstraction

- 1. Logical (e.g. relational) model
- 2. Data organization
 - indexing
- 3. Physical model
 - File organization
 - File storage
 - Determines access and manipulation methods

Database Algorithms

- Data entry - Index use
- Query evaluation
 - requests for data satisfying specified constraints
 - Efficiency
- Achieve concurrency
- Achieve robustness

Performance issues?

- Efficiency of algorithms
- · Large amounts data - disk I/O!
- Distributed across network - Where is data?
 - Where should data be?

General Information Systems

- · Semi-structured data – XML
- · Unstructured data
 - No predefined structure useful to query/ management system
 - Information retrieval systems
- · properties share with database systems
 - Large collection of information
 - Desire uniform access mechanisms

Access mechanisms

A way to get at specific parts of the information.

A query is a request for data or information satisfying specified constraints

- "all students taking Italian" "information on small villages in Italy"
- · What questions do you want to ask?
- Range of expectations > Query for information know is (or isn't) there Query for information know is (or isin > Query for info will know when see it • Predictability of results?
 o "Surprise me" – Data Mining

How do you answer questions?

- Models of data/information
- ≻Correctness
- · In database systems, models of data and correct search well-defined
- · In information retrieval, these #1 issues

Our syllubus Part 1: Models and Queries

- · Structured Database models - The entity-relationship model
 - constraints - The relational model
 - · Algebra, calculus and SQL
- Semi-structured and unstructured data
 - XML and the tree model
 - · bridging database systems and IR systems - Information Retrieval

Our syllubus Part 2: Storing, Retrieving and Maintaining

- File Organization
- · Indexing Methods
 - B+ Trees
 Dynamic hashing
- Relational Query Evaluation

 Optimization
- Transactions
- Crash recovery
- logging

Our syllubus Part 3: Current Research

- · advances in fundamentals and applications
- trend in research:

Graduate Focus

- Emphasize fundamental models and methods
 - $\ensuremath{\mathsf{expressiveness}}$ of languages
 - relationships through constraints
 - $\, {\rm effectiveness}$ and ${\rm efficiency}$
- De-emphasize how use standard DB systems

 still opportunity to do so

Graduate Focus

- Explore interaction with "other" research areas
 - research techniques applied to database/info systems
 - example: advanced data structures
 - example: caching in information systems
 - database/info system concepts applied to research
 - example: how integrate heterogeneous data sets in genomics
 - example: how structure data for network monitoring

Course logistics- overview

Web page has all: READ!!

http://www.cs.princeton.edu/courses/archive/fall11/cos597A/

- Texts
 - Required: Database Management Systems by Ramakrishnan and Gehrke, 3rd Edition, McGraw-Hill, 2003
 reserved books in library
 - online readings
- 2 take-home tests (20% each)
- 5 problem sets (15%)
- Project (35%) your choosing with approval
- Class Participation and oral presentation (10%)
- My office hours Mondays 4:30-5:30 or by appointment