COS 597A:
Principles of
Database and Information Systems

Indexing, Part Il

Dynamic hashing

» Have talked about static hash

— Pick a hash function and bucket organization
and keep it

— Assume (hope) inserts/deletes balance out
— Use overflow pages as necessary

* What if database growing?
— Overflow pages may get too plentiful

— Reorganize hash buckets to eliminate
overflow buckets
« Can’t completely eliminate

Family of hash functions

« Static hashing:

choose one good hash function h
— What is “good”?

* Dynamic hashing:
chose a family of good hash functions
—hg, Ny hy, by, o hy
—h;,4 refines h;:
if hyeq (X)= Ny, (y) then hy(x)=hy(y)

A particular hash function family

+ Commonly used: integers mod 2’
—Easy: low order i bits

» Base hash function can be any h mapping
hash field values to positive integers
hy(x)= h(x) mod 2°for a chosen b

—2b buckets initially
* h(x)= h(x) mod 2°*

— Double buckets each refinement
If x integer, h(x)= x sometimes used
»What does this assume for h, to be good?

Specifics of dynamic hashing

» Conceptually double # buckets when reorganize

* Implementationally don’t want to allocate space
may not need

— One bucket overflows, double all buckets? NO!

Solution?
Extendable hashing
— Reorganize when and where need

Extendable hashing

* When a bucket overflows,

— actually split that bucket in two

— Conceptually split all buckets in two
» Use directory to achieve:

directory Buckets New directory Buckets
overflows ‘ —-{ split ‘

~
N ':—

Extendable hashing details

+ Indexing directory with h(x)= h(x) mod 25+
+ On overflow, index directory with
hi.4(x)= h(x) mod 2b**1
+ Directory size doubles
» Add one bucket

00 |—[overflows | 000 — split |

~
o\ [or
: ’z—

* What did we do?
— Split overflowing bucket m
« Allocate new bucket
— Copy directory
— Change pointer of directory entry m+2b+

Keep track of how many bits actually using
— depth of directory: global depth
— depth of each bucket: local depth (WHY KEEP?)

Rule of bucket splitting

* On bucket m overflow:
— If depth(directory) > depth(bucket m)
« Split bucket m into bucket m and bucket m+2depth(m)
» Update depth buckets m and m-+2depth(m)
» Update pointers for all directory entries pointing to m

— If depth(directory) = depth(bucket m)
* Split bucket m into bucket m and bucket m+2depth(m)
« Update depth buckets m and m+2depth(m)
» Copy directory and update depth(directory)
+ Change pointer of directory entry m+2depth(m)

[2] g? [—{_overflows % [2] gg? —[__spiit %
iy
10 010
" \mmz] [on X]
101 " j
o),
Example

Buckets: max 4 keys and data per bucket
Start with 4 buckets: depth(directory)=2

Then insert h(r) = 18
bucket ‘10’ overflows

Insert records with
hash values h(r) =
0,1,2,3, 6,10,

14, 7,11, 15: D

[2[00 [0

01]
10

t

s

[(]0]

Example continued
Buckets: max 4 keys and data per bucket

After inserted h(r)=18: Then insert h(r) =19
bucket ‘11’ overflows

D 000 000 0
- Ao
011 (1);2) Zi018 3]
o 101 ame 9]
o it \@%

‘{715

Extendable hashing observations

 Splitting bucket does not always evenly
distribute contents
— hi(x) may equal h4(x), hj(X), ...

* May need to split bucket several times
— NOT: global depth — min(local depth) = 1

» Can accept some overflow pages or split
aggressively

» Almost no overflow pages with good hash
function and aggressive splitting.

* If h(x) = h(y) always same bucket
— cannot avoid overflow if too many of these!

Example bad bucket overflow

Bucket:

5,13, 21, 29
h(key) mod 22 = 1
h(key) mod 23 =5
If add new entry with h(key)= 37 then h(key) mod 2% =5
=>splitting once not enough

Need depth 4 directory .
5,21, 37

.

Index Operation
Costs

Extendable Hashing Costs

Assume: One page per bucket; no overflow pages

+ Look up:#pagesread = 1+ 1
* Assumes directory on disk
* Insert without overflow
= look-up cost + 1 to write page of bucket
* Insert with overflow - splitting once:
= look-up cost + 1 to write page of original bucket
+ 1 to write page of new bucket
+ 2 * (# disk pages of directory) to copy
» Splitting once may not be enough

Extendable Hashing Costs

One page per bucket; use some overflow pages

* Look up: add (# overflow pages) worst case
* Insert without splitting: add 1 if add new
overflow page
» Insert with splitting once:
add (# overflow pages) always to look-up cost
add (# overflow pages) to write cost worst case
» must read overflow pages to split
» adding 1 new bucket (page), so end up with
overflow pages within 1 of number had before "

B+ tree costs: preliminaries

* height of B+ tree = length of path: root — leaf
<[logge (N)] +1
* N is number of leaves of tree
» d+1 is min fanout of interior nodes except root
* + 1 is for root

« typically root kept in memory
— keep as many levels of tree as can in memory
— buffer replacement algorithm may do,
or pin

B+ tree costs: What is N?

B+ tree file organization:
— each leaf holds records
N = [(# records in file / # records fit in a page)]
N < 2* [(# records in file / # records fit in a page)]
assuming no duplicate search key values

» B+ tree primary index on sequential file:
— each leaf holds pointers to file pages
* can be sparse index
—one key value (smallest) for each file page
* (key value, pointer) pairs in leaves
—assume fit between d and 2d in leaf
[(# pages in file) / 2d)] < N < [(# pages in file) / d)]
» assumes no key value spans multiple pages 18

B+ tree costs: What is N?

* B+ tree secondary index:
— each leaf holds pointers t
* indirection: pointers in‘point to records
» must be dense

* (key value, pointer) pairs in leaves
—assume fit between d and 2d in leaf

N < [(# key values in file) / d)]
N = [(# key values in file) / 2d)]

B+ tree costs: retrieval

* retrieving single record
of pages accessed =
height of B+-tree
+ 1 for root if on disk
1 if leaves pt to records
2 if leaves pt to page of pointers to records

<[10gge1 (N)T+3

* typical height?

Indexing summary

* dynamic search tree: B+ trees
dynamic hash table: extendable hashing
size of index depends on parameters
—dense or sparse?
— storing records? pointers to records?
pointers to pages of pointers to records?
+ disk 1/0O cost same order as “in core”
running time.
— hash constant time
— search tree as log(N) 21

