
1 

1 

COS 597A:  
Principles of  

Database and Information Systems 

Indexing files 

2 

Last time  
•  File = a collection of (pages of) records 
•  File organizations:  two issues 

–  how records assigned pages 
–  how pages put on disk 
–  Heap:  linked list (or directory) of pages  

•  records anywhere on any page - no order  
•  pages anywhere on disk 

–  Sorted sequential pages  
•  Records sequential in each page by designated sort attribute 
•  can binary search: get ith page in one disk read 

–  Hashing:  
•  Designated hash attribute hashing records to buckets 
•  Bucket => (primary) page for hash function value 

–  pages can be anywhere if hash table gives location 

3 

Avg. time Heap Sorted Hashed 

Search = (unique) .5BD Dlog2B D 

Search  range BD D(log2B + # extra 
matching pages) 1.25 BD 

Insert 2D Search + D + BD 2D 

Delete  (have 
record location) 

2D 2D+BD 2D 

Focus on key elements of cost 
Improvements only for attribute of sort or hash 
Improve access using other attributes?  => index 

B data pages in file         D avg time to R/W page        R records per page 4 

Index 
•  Auxillary information on location of a record or page to 

facilitate retrieval 

•  Search key:  attribute (i.e. field, column) used as look-up 
value for index 
–  not confuse with {primary, candidate, super} key 
–  alternate term “index field” 

•   “index key” if attribute is a candidate key 
–  Could actually be combination of attributes 

•  e.g. LastName, FirstName 

•  Basic index is a file containing mappings:  
       Seach key value → pointer(s) to page(s) containing  

                           records with given search key value          

5 

Index Types  
1.  Index works with file organization 

–  Index and file work off same attribute 
–  Two types: 

A.  Index is file organization 
–  Example: Hashing file organization 
–  Index is access method: get pointer to page serving as 

primary bucket of records for given hash value 

B.  Index supplements file organization 
–  Example:  Sequential file plus search tree whose 

leaves point to first page containing value seeking 

–  called clustered index 
–  some refer to as primary index 

•  not necessarily on primary key of relation 6 

Index Types cont.  
2.  Index works independent of file organization 

–  File not organized on search key of index 
–  Index must provide  

search key value → list of pointers to 
                                       all file pages that contain  
                                records with that value 

–  Example hash index:   
•  bucket contains list of page pointers 
•  pages may be scattered throughout the file 
•  overflow if too many pointers for one bucket 

–  called nonclustering index 
–  some refer to as secondary index 



2 

7 

A Sorted Index 
•  Consider sorted file but without consecutive 

pages stored adjacently on disk 
–  Each page sorted 
–  Each page linked to next page in sorted order 
–  Cannot binary search 

•  Index:   sorted attribute value    pointer to first page containing 

•  One entry per attribute value in data file => dense index 
•  Can binary search index entries if can keep in memory or 

in sequential disk pages 

Sorted  
order 

8 

Indexing sorted files - notes 

•  When index on sorted file using same attribute,  
    index need not be dense (so sparse) 
•  Insert/delete for sorted file with sorted index 

costs to maintain sorted order in both 
•  Index may be sorted on different attributes(s) 

than file, but clustered as file is 
–  Example:     file sorted on (last_name, first_name) 
                       index sorted on  last_name 

9 

Alternative sparse index for sorted file 
again:  
index search key same as sort attribute for file 

file page number   page location   first value of search key on page 

One entry per file page 
Again, binary search if keep in memory or sequentially on disk 

Sorted  
order 

10 

Compare costs:   
dense sorted index  versus 
sparse sorted index with one value per data file page  

•  Use our crude estimates with 
B data pages in file                     D avg time to R/W page         
R records per page 

•  Suppose index record 1/10 size of data record 
•  Suppose search key (= sort attribute) is candidate key 
•  Cost search for unique value using dense index? 

•  Cost search for unique value using sparse index? 

11 

Cost example dense sorted index   
•  Use our crude estimates with 

B data pages in file                     D avg time to R/W page         
R records per page 

•  Suppose index record 1/10 size of data record 
•  Suppose search key (= sort attribute) is candidate key  

•  Cost search for unique value using dense index: 

number of records is the same for index file 
B/10 pages in index file  (file page size is fixed for all files) 
Binary search cost =  Dlog2(B/10) 

Total cost = Dlog2(B/10) + D 
includes data page access 12 

Cost example sparse sorted index 
•  Use our crude estimates with 

B data pages in file                     D avg time to R/W page         
R records per page 

•  Suppose index record 1/10 size of data record 
•  Suppose search key (= sort attribute) is candidate key 

•  Cost search for unique value using sparse index: 

B pages in data file => B entries in index file 
10R index records per file page  => B/(10R) index pages 
Binary search cost =  Dlog2(B/(10R)) 

Total cost = Dlog2(B/(10R)) + D 
includes data page access 



3 

13 

Compare costs:   

•  Use our crude estimates with 
B data pages in file                     D avg time to R/W page         
R records per page 

•  Suppose index record 1/10 size of data record 
•  Suppose search key (= sort attribute) is candidate key 

•  Cost search for unique value using dense index? 
Dlog2(B/10) + D 

•  Cost search for unique value using sparse index? 
Dlog2(B/(10R)) + D 

14 

Compare costs: insertion  
•  Use our crude estimates with 

B data pages in file                     D avg time to R/W page         
R records per page 

•  Suppose index record 1/10 size of data record 
•  Suppose search key (= sort attribute) is candidate key 
•  Recall data file pages not nec. stored consecutively on disk 

–  so can use overflow pages 

•  Cost to insert = cost to insert in data file 
                               + cost to insert in index file  

                           = Search cost  
                               + D + ~4D  write data file page and move ~1/2 records 
                                               of page if overflow 
                               + D             write index entry 
                                                 D*B/10    move records for dense index 
                               +  

                                      D*B/(10R)    move records for sparse index 

15 

Index independent of file organization 

But look again,  
if search key is a candidate key,  
this index works for any file organization : 

search key        pointer to unique page containing 

One entry per search key value - dense  
Can binary search index as before if keep in memory or sequentially on disk 

Sorted  
order 

16 

Sorted index for general case 
•  One value of search key found in many records 
•  Need list of pointers to pages containing these records 
•  Dense index still works 
•  Most common arrangement: 

–  indirection 

Seach key            pointer to page containing list 

One entry  
per attribute value. 

Sorted  
order 

17 

Addressing costs 
•  Large sorted index costly in space and in time to 

insert/delete 
–  When sorted index clustered, can use sparse index to 

avoid space 
–  For general case, must have dense index 

•  Ideal: index to fit on one file page. 
–  Keep in main memory 

•  Rarely achieve, so next best: 
–  Index need not be stored sequentially on disk 
–  Access cost is no worse than O(log2B) 

    => Search Tree! 
18 

Tree index 

A value  … 

value 

value  

value  

root 

• Each node of tree fits in one page 
• Each node of tree contains search key values  

and pointers to subtrees for ranges of values 
• A leaf is  

- For clustered index:  a page of data file 
- For general index:  a page of pointers to records with given index values 

B  

A≤values<B 



4 

19 

Static Trees 

•  Build for file of records as balanced tree 
•  Not gracefully accommodate insert/delete 
•  ISAM:  Indexed Sequential Access Method 

•  We focus on dynamic search trees 

20 

Dynamic Trees 
•  Tree will change to keep balance as file grows/

shrinks 
•  Tree height:  longest path root to leaf 
•  N data entries 

Data entry is page of data file if clustered index 
Data entry is page of (value, record pointer) pairs 

otherwise 
•  Want tree height proportional to logN always 

21 

B+ Trees 
•  Most widely used dynamic tree as index 
•  Most widely used index 

•  Properties 
–  Data entries only in leaves 

•  Compare B-trees  
–  One page per tree node, including leaves 
–  All leaves same distance from root  => balanced 
–  Leaves doubly linked 

•  Gives sorted data entries 
–  Call search key of tree “B+ key” 

22 

B+ trees continued 
•  To achieve equal distance all leaves to root 

cannot have fixed fanout 
•  To keep height low, need fanout high 

–  Want interior nodes full 
•  Parameter d - order of the B+ tree 
•  Each interior node except root has m keys for 

d≤m≤2d 
–  m+1 children 

•  The root has m keys for 1≤m≤2d 
–  Tree height grows/shrinks by adding/removing root 

•  d chosen so each interior node fits in one page 

23 

root 

B+ 
Tree  

Interior index nodes 

… 

Leaves will be 1/2 full to full as well 

24 List of pointers to records for “ace” 
adapted from slide for Database Management Systems  

by authors R. Ramakrishnan and J. Gehrke 

Example B+ Tree 
order = 2:  2 to 4 search keys per interior node 

ace ad 

Root 

dog 

dye egg 

cad cat dog … dye … … … …. … … 

cab bill 

bit 

pig heart soap 

bat bee bill boy brie call cell 

… 

dune eel 

… 

List of pointers to records for “ad” 
List of pointers to records for “bat” 

… … … 
List of pointers to  
records for “eel” 

… 
… 

… 

leaves 

… 

… 



5 

25 

B+-tree insert and delete 
Example 

26 

Starting configuration 
B+ tree of order d=1 

13 

5 10 

20  

40 50 

root 

30  

1,4 5,9 
11,12 

13, 18 20,29 

30,38 41,45 60, 70 

27 

Insert 19:  
split leaf; expand parent with key 18 

13 

5 10 

18  

40 50 

root 

30  

1,4 5,9 
11,12 

13 20,29 

30,38 41,45 60, 70 

18, 19 

20  

28 

Insert 27 
split leaf; expand parent with key 27 => too full 

13 

5 10 

18  

40 50 

root 

30  

1,4 5,9 
11,12 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20  

29 

Insert 27 
 split leaf; split parent;  

expand grandparent with key 20 => too full 

13 

5 10 

18  

40 50 

root 

30  

1,4 5,9 
11,12 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20 

30 

Insert 27 
 split leaf; split parent; split grandparent 

new root with key 20 

13 

5 10 

18  

40 50 

root 

30  

1,4 5,9 
11,12 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20 



6 

31 

Delete 5, then 9 
 redistribute from right sibling 

13 

5 12 

18  

40 50 

root 

30  

1,4 11 
12 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20 

32 

Delete 12 
 merge leaves, delete key from parent 

13 

5 

18  

40 50 

root 

30  

1,4 11 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20 

33 

Delete 4, then 11 
 merge leaves, delete key from parent 

=>parent not full enough 

13 

18  

40 50 

root 

30  

1 

13 20, 
30,38 

41,45 
60, 70 

18, 19 

27  

27,29 

20 

34 

Delete 4, then 11 
 merge leaves, merge parent, bringing down key 13 

 =>grandparent not full enough 

13 18  40 50 

root 

30  

1 
13 20, 

30,38 
41,45 

60, 70 

18, 19 

27  

27,29 

20 

35 

Delete 4, then 11 
 merge leaves; merge parent, bringing down key 13 

merge grandparent, bring down key 20,  
remove root 

13 18  40 50 

root 

30  

1 
13 20, 

30,38 
41,45 

60, 70 

18, 19 

27  

27,29 

20 


