
1

COS 597A:
Principles of

Database and Information Systems

File organization and
access costs

Move down a level of abstraction

•  Until now at level of user view of data
–  models
–  query languages

•  Now: how actually store data and access
–  disk storage (low-level abstraction)
–  file organization (level between disk and user)
–  access costs

•  Next: how compute query results efficiently
–  what are algorithms
–  what are costs

Disks
•  Main storage for large databases
-  too much data for main memory
- need permanent storage

So far as technology advances, disk (aka hard
drive) still gives significantly more space and less
speed, regardless of how big/cheap RAM gets

–  voracious appetite for space!
–  True no matter where sit on cost/size curve for system

•  impact solid state drives?

Disk organization

•  platters containing tracks
•  track read sequentially
•  can seek from track to track
•  tracks broken into sectors

– smallest physical unit can read / address
–  typical size 512 Bytes

•  Advanced Format 4096 Bytes

Disk access costs

•  seek time
–  milliseconds

•  rotational latency
–  milliseconds

•  transfer rate
–  100 MB/sec

•  compare RAM
–  nanoseconds
–  factor of 106

• disk closeness
–  adjacent sectors
–  same track
–  same cylinder
–  adjacent cylinder

File

•  collection of records
•  records grouped into pages

–  record ID (rid) conceptually (page #, slot #)
– Slot # gives position on page

•  page is multiple of disk sectors
– stored sequentially on disk
– page smallest unit read

•  typical 4-8 KB
–  “page” also known as “block”
– 

2

Memory buffer

•  Memory allocated for file read/write (I/O)
•  size of buffer in pages
•  read disk page into memory buffer
•  write to disk page from memory
•  buffer as big as can afford
•  buffer often not big enough

– buffer management

File organizations

Two issues

•  how records assigned pages
– affects algorithms
– affects which pages read & in what order

•  how pages put on disk
– want pages of file physically close on disk
– want likely sequences of pages read close

File storage management
•  Who manages storage of files on disk

1.  custom OS for DBMS
2.  let OS do it

–  typically one file per relation
3.  define one OS file for whole DBMS

–  DBMS manages w/in file

•  DBMS buffer manager
–  replacement strategy
–  pinning
–  forced-out pages

Conceptual organization of file

•  Heap file
–  linked list pages or directory of pages
– no order records in pages
– pages anywhere on disk

Conceptual organization of file (cont.)

•  Hashing file
– hash function applied to record puts in bucket

•  gives address of primary page of bucket
•  designated hash attribute(s) of records

– pages can be anywhere if hash gives location
– can be overflow

•  pointers to overflow pages
•  where overflow pages on disk?

–  try to keep pages 80% full

Conceptual organization of file (cont.)

•  Sequential file
– conceptually ordered set of records

•  order often sort on attributes of relation
–  records stored in order giving ordered set pages
– pages sequentially close => physically close

•  compact after delete
–  binary search?

•  need ith page in sorted order in one disk I/O

•  can have sorted file that is not sequential file

3

Acces cost model

•  B number of data pages in file
•  R number of records per page in full page
•  D average time to R/W disk page

– assume individual pages not sequential on disk
• no “block reads”

•  Ignore CPU time

Simple average case time analysis

•  Simple assumptions
–  Insert at end of heap
– No overflow buckets for hash

•  Keep 80% occupancy
•  Inserts/deletes in balance

– Sorted sequential file with binary search
– Delete assumes have address of record

•  Use analysis for relative costs
– TOO CRUDE for “on the fly” cost estimates

Avg. time Heap Sorted Hashed
Scan
Search =
(unique)

Search =
(multiple)

Search range

Insert
Delete

B data pages in file D avg time to R/W page
R records per page

Search
on

record
attribute

Avg. time Heap Sorted Hashed

Scan BD BD 1.25 BD
Search =
(unique) .5BD Dlog2B D
Search =
(multiple) BD

D(log2B +
extra
matching
pages)

D (1
+ # extra
matching
pages)

Search range BD “ 1.25 BD
Insert 2D Search +

D + BD 2D

Delete 2D 2D+BD 2D

Critique
•  R&G don’t account for how to keep hashed file

80% occupied
–  if not, overflow costs sometimes

•  Sorted sequential file - expensive to keep pages
continguous on disk
–  link pages + look-up table sorted on first value

on page of attribute sorted on

=> indexes

file page # file page location first attribute
value of page

