

Query Optimization

- Query as expression over relational algebraic operations
- Get evaluation (parse) tree
-Leaves: base relations
- Interior nodes: operations

Optimization considerations

- Choice of algorithm at each interior node
- Cost Estimates
- We've just studied analysis
- Rearrange tree
- Use algebra of operations
- e.g. associativity of JOIN

$\begin{gathered} (\mathrm{A} \otimes \mathrm{~B}) \otimes \mathrm{C} \\ = \\ \mathrm{A} \otimes(\mathrm{~B} \otimes \mathrm{C}) \end{gathered}$					
			\downarrow		
			B	C	4

Interaction of algorithm choice and tree arrangement

- Convention: for any nested loop join, left branch represents outer relation
- Control with commutativity of JOIN

$$
(\mathrm{A} \otimes \Delta \mathrm{~B})=(\mathrm{B} \otimes \mathrm{~A})
$$

- Result of an interior node is input to parent
- Algorithm affects properties of presentation of result -Sorted?
- Cost analysis must proceed bottom up

Issues

- Need size estimates of result relation
- \# records per page (size of record)
- \# of pages (\# of records)
- Note:
- page size fixed system parameter
- Duplicates significantly affect \# of records
- Need plan for buffer use
- Materialize result: write result of interior node to disk
- Costs of writes for intermediate results count!
- Intermediate result fits in buffer
- Algorithm for parent use this?
- Can save cost of writing result by child \& reading result by parent
- Pipeline result of child as input to parent

Pipelining

- Parent and child execute concurrently
- Parent and child share buffer space
- k-page shared (sub)buffer
- child produces k pages of output - Fill buffer
- parent consumes k pages of input from child Empty buffer
- NO disk write cost child;
- NO disk read cost parent
- Algorithms of child and parent must support this
- Child: usually does; produce 1 page output at a time
- Parent: choice of algorithm critical !

Algorithms for parent - JOIN

- Block nested loop?
- Outer relation - OK
- Inner relation - NO
- Index nested loop?
- Outer relation - ok - same as Block nested loop
- Inner relation - NO
- Using index
- Sort-merge
- Hash

Algorithms for parent - JOIN

- Block nested loop?
- Outer relation - ok
- Read relation once, "chunk" by "chunk"
- Use shared buffer for "chunk"
- Inner relation - NO
- Must re-read entire inner relation for every "chunk" of outer
- Index nested loop?
- Sort-merge
- Hash

Algorithms for parent - JOIN

- Block nested loop?
- Outer relation - OK
- Inner relation - NO
- Index nested loop?
- Outer relation - OK
- Inner relation - NO
- Sort-merge
- To sort input relation:
- Can pipeline from child to group of buffer pages for Stage 1 (Stage 1: sorting individual groups to make runs)
- If child produced in sorted order, pipeline merge
- Child must be outer relation if duplicates
block nested loop for duplicates
- Hash

Algorithms for parent - JOIN

- Block nested loop?
- Outer relation - OK
- Inner relation - NO
- Index nested loop?
- Outer relation - OK
- Inner relation - NO
- Sort-merge - OK
- Hash
- To partition input relation:
- Can pipeline from child to buckets in buffer for Stage 1
- OK

Allocating buffer pages

- If have simultaneous pipelining up tree
- How many buffer pages for each child-toparent exchange?
- Affects speed of algorithms
- Limit number of simultaneous pipelines
- If no pipeline between child and parent materialize result of child
- Child writes result to disk
- Parent reads from disk

Multi-operation query

- Want plan
- Parse tree
- Pipelining plan for each edge
- Algorithm for each interior node (operation)
- To build plan
- Consider alternatives
- ALL?
- Estimate costs
- Choose "best"
- Really "good enough"

Calculating size estimates of result

- Assume
- independence of attributes of a tuple
- Uniform distribution of values of each attribute among tuples
- Calculate reduction factor (RF) for \# tuples of result
- Examples:
$\sigma_{f}=$ constant and index on attribute f:
RF = 1/(\# search key values)
$\sigma_{\mathrm{f}}>$ constant and tree index on attribute f:
$R F=\frac{\text { (high key value) }- \text { constant }}{(\text { high key value })-(\text { low key value })}$
- Estimate \# pages output as RF * (\# pages input relation) 15

Size of tuples of result

- If attributes of fixed length, calculate
- Projection: sizes of attributes retained
- Cross-product RXS: sum of sizes of tuples in
R and S
- Join with single occurrence equal attributes - Projection of Cross-product
- Selection \& Union-compatible set operations: no change
- If attributes of variable length, estimate

Catalog

- Need info about base relations
- In catalog:
- For each base relation:
- \# tuples
- \# pages
- List of existing indexes
- For each index
- \# distinct search-key values
- \# pages
- For each tree index
- Tree height
- high/low search keys

Reduction factor of joins

- Estimate \# tuples of $(R \diamond \diamond S)$ on shared attribute f as

```
RF * (# tuples R) * (# tuples S)
```

- Looking at join as selection on RXS
- Example: $\diamond \diamond$ for join attribute f
- If indexes on R.f and S.f
$R F=1 /$ max (\# key values R.f, \# key values S.f)
- If no indexes, could use \# distinct values
-What if real-valued?

Planning

- Know how estimate costs of algorithms
- Know how estimate sizes of results
- How use to make plan for query eval?
$\operatorname{interact}\left(\begin{array}{c}\text { determine operation order for expression } \\ \bullet \text { algebraic equivalences } \\ \text { select algorithm for each operation } \\ \bullet \text { best depends on operation order }\end{array}\right.$
- Can't try all possibilities - exponential time

Heuristics

Consider k joins: $R_{1} \diamond R_{2} \diamond \diamond \ldots \diamond>R_{k}$

- Too many parse trees
- associativity and commutativity
- Example heuristic:
consider only "Left-deep join trees"
- IBM system R 1979
- determines tree shape, not order R_{i}
- why this shape?
- still a lot of trees: k !

Using dynamic programming

For node distance d from leftmost leaf,

- estimate lowest cost of evaluating subtree for each size- $(d+1)$ subset of $\left\{R_{i}\right\}$

1. without regard to order of result records
2. in each "natural" sorted order of result records

- Use results from child node
- Include pipelining strategy
- Remember best plans and pipelining strategy for each subset
- can reconstruct order going back down tree
- Running time exponential in k
- still consider each subset of $\left\{R_{i}\right\}$
- don't consider each order of R_{i} 's at next level 21

Index-only Algorithms

If have indexes giving pointers to records for all relations in query, consider:

- Use indexes to execute operations
- must have right search keys
- Retrieve records only at end
- If need only count, never retrieve full records

Algorithm design

- Observe for $\left(R_{1} \diamond \diamond R_{2} \diamond \diamond \ldots R_{k-1}\right) \diamond \diamond R_{k}$:
- once decide least-cost way do () actual order compute w/in () not affect best choice for () $\diamond \diamond R_{k}$
- whether () result sorted or hashed does affect best choice for () $\diamond \diamond R_{k}$ \Rightarrow dynamic programming algorithm
- walk up left-deep tree

Other operations

- Move selects and projects up/down tree
- Try to push selects down tree

Pushing projects can also be useful
-why?

- not always good idea: destroys indexes
- can include in left-join-tree analysis
- Text has detailed discussion equivalences for relational algebra operations

Summary

- Have seen in detail how to execute joins
- Have considered execution of other relational alg. op.s
- Have looked at how estimate sizes of results
- Have briefly considered one heuristic for making plan for several joins
- restrict to left-deep trees
- Have looked briefly at planning when relational alg. expr. has more than just joins

