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Abstract 

One of the potential benefits of distributed systems is their use in 
providing highly-available services that are likely to be usable when 
needed. Availabilay is achieved through replication. By having inore 
than one copy of information, a service continues to be usable even 
when some copies are inaccessible, for example, because of a crash 
of the computer where a copy was stored. This paper presents a 
new replication algorithm that has desirable performance properties. 
Our approach is based on the primary copy technique. 
Computations run at a primary. which notifies its backups of what it 
has done. If the primary crashes, the backups are reorganized, and 
one of the backups becomes the new primary. Our method works in 
a general network with both node crashes and partitions. Replication 
causes little delay in user computations and little information is lost in 
a reorganization; we use a special kind of timestamp called a 
viewstamp to detect lost information. 

1 Introduction 
One of the potential benefits of distributed systems is their use in 

providing highly-available services, that is, services that are likely to 
be up and accessible when needed. Availability is essential to many 
computer-based services; for example, in airline reservation systems 
the failure of a single computer can prevent ticket sales for a 
considerable time, causing a loss of revenue and passenger 
goodwill. 

Availability is achieved through replication. By having more than 
one copy of important information, the service continues to be usable 
even when some copies are inaccessible, for example, because of a 
crash of the computer where a copy was stored. Various replication 
algorithms have been proposed to achieve availability 
[2, 4, 9, 11, 12, 16, 21,351. This paper presents a new replication 
algorithm that has desirable performance properties. 
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Our algorithm runs on a system consisting of nodes connected by 
a communication network. Nodes are independent computers that 
communicate with each other only by sending messages over the 
network. Although both nodes and the netwolrk may fail, we assume 
these failures are not byzantine [24]. Nodes can crash, but we 
assume they are faiistop processors (341. The network may bse, 
delay, and duplicate messages, or delver messages out of order. 
Link failures may cause the network to parlition into subnetworks that 
are unable to communicate with each other. We assume that nodes 
eventually recover from crashes and partitions are eventually 
repaired. 

Our replication method assumes a model of computation in which 
a distributed program consists of modu/es, each of which resides at 
a single node of the network. Each module contains within it both 
data objects and code that manipulates the objects; modules can 
recover from crashes with some of their state intact. No other 
module can access the data objects of another module directly. 
instead, each module provides procedures that can b8 used to 
access its objects; modules communicate by means of remote 
pfoceduf8 calls. Modules that make calls (are called clients; the 
called module is a server. 

Modules are the unit of replication in our method. Ideally, 
programmers would write programs without concern for availability in 
some (distributed) programming language that supports our model of 
computation. The language implementation thlen uses our technique 
to replicate individual modules automatically; ithe resulting programs 
are highly available. 

We assume that computations run as atomic transactions [14]. 
Our method guarantees the one-copy serializability correctness 
criterion [3, 331: the concurrent execution of transactions on 
replicated data is equivalent to a serial execution on non-replicated 
data. 

Our approach is based on the primary o~py technique [t, 361. 
which works roughly as follows. One replica is designated the 
primary; the others are backups. The primary is responsible for the 
processing of transactions that use its objects; it notifies the backups 
of what it has done. When a replica crashes or is separated from the 
others by a partition. or when a replica recovers from a crash or a 
parfition is repaired, the replicas are reorganized and a new primary 
is selected if necessary. We refer to this reorganization as a view 
change (131. Once the view change is complete, the (new) primary 
can continue with transaction processing. 

The primary copy technique as originally proposed worked only if 
node failures were distinguishable from network failures; in general 
such a distinction cannot be made and our method does not require 
it. In addition, our method exhibits useful performance properties. 
Transactions encounter little delay in interacting with the replicas, yet 
little information is lost in a view change. Remote procedure calls to 
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access or modify objects are executed entirely at the primary, which 
notifies the backups in background mode. If a view change 
happens, the effects of a call may or may not survive into the new 
view. If they do survive, the transaction can commit; otherwise, it 
must abort. We use a special kind of timestamp called a viewsramp 
to distinguish the two situations. 

We begin in the next section with an overview of our method. 
Sections 3 and 4 describe the two parts of the method, transaction 
processing and view changes. Section 5 discusses how our method 
compares with other replication techniques. We conclude in Section 
6 with a summary of what we have accomplished. 

2 Overview of our Method 
The method replicates individual modules to obtain module 

groups. A module group consists of several copies of the module, 
called cohods, which behave as a single, logical entity; the program 
can indicate the number of cohorts when the group is created. The 
set of cohorts is the group’s configuration. Each cohort has a unique 
name called an mid; the group as a whole bears a unique groupid. 
We expect a small number of cohorts per group, on the order of 
three or five. 

One cohort is designated as the primary; it executes procedure 
calls, and participates in two-phase commit. 

The remaining cohorts are backups, which are essentially passive 
and merely receive state information from the primary. 

Failures and recoveries are masked when they are noticed. Over 
time the communication capability within a group may change as 
cohorts or communication links fail and recover. To reflect this 
changing situation, each cohort runs in a view. A view is a set of 
cohorts that are (or were) capable of communicating with each other, 
together with an indication of which cohort is the primary; it is a 
subset of the configur&ion and must contain a majority of group 
members. 

A group switches to a new view by executing a view change 
protocol; our protocol is a simpfiffcation and modification of the virtual 
partitions protocol [12]. Each view is identified by a unique viewid; 
we guarantee that viewids are totally ordered. The view change 
protocol generates a new view and viewid. If a majority of cohorts 
accept the new view, cohorts switch to the new, active view; 
otherwise, they remain in their old views, but the views become 
inactive. Transactions are processed only in active views. 

Views and viewids reflect the current communication patterns, but 
not the information about committed and active transactions that 
have run at the group. This additional information is obtained by 
using fimestamps. Timestamps are unique within a view and form a 
total order: they are generated by the primary and are easy to 
produce, for example, by incrementing a local counter. The primary 
generates a new timestamp each time it needs to communicate 
information to its backups; we refer to each such occurrence as an 
event. Examples of events are the completion of processing of a 
remote calf or of a prepare or commit message. Each event is 
assigned a unique timestamp, and later events receive later 
timestamps. Instead of checkpointing events directly to the backups, 
the primary maintains a communication buffer (similar to a fifo 
queue) to which it writes event records. An event record identifies 
the type of the event, and contains other relevant information about 
the event. Information in the buffer is sent to the backups in 
timestamp order. The buffer implementation provides reliable 
delivery of event records to all backups in the primary’s view; if it fails 
to defiver a message, then a crash or communication failure has 
occurred that will cause a view change. 

We use timestamps as an inexpensive way of determining what 

information survives a view change. Because a timestamp is 
meaningful only within a view, we introduce viewstamps. A 
viewstamp is simply a timestamp concatenated with the viewid of the 
view In which the timestamp was generated; we refer to the parts of 
viewstamp Y as v.id and v.ts. Each cohort maintains a history. 
consisting of a sequence of viewstamps. each with a different viewfd. 
We guarantee that for each viewstamp v in its history, the cohort’s 
state reflects event e from view v.id iff e’s timestamp is less than or 
equal to v.ts. 

The correctness of our algorithm depends on the interaction of 
transaction processing and the view change algorithm. Transaction 
processing guarantees that transactions are serialized properly. In 
addition, it guarantees that a transaction can commit only if all its 
events are known to at least a majority of cohorts. The view change 
algorithm guarantees that events known to a majority of cohorts 
survive into subsequent views. Thus, events of committed 
transactions will survive view changes. Not all events survive view 
changes, however; for example, the processing of a particular 
remote calf may be lost. We use the hisfory plus some information 
that arrives in the prepare message to ensure that the transaction 
will be forced to abort in such a case. On the other hand, if the 
history and the information in the prepare message indicate that all 
the events associated with the transaction survived the view change, 
the transaction can commit. 

In the next two sections we describe our technique. First, we 
describe transaction processing and then the view change algorithm. 

3 Running Transactions 
Our system runs transactions in a manner similar to a system 

without replication. There are two main differences: we use 
viewstamps to determine whether a transaction can commit, and 
instead of writing Information to stable storage [25] during two-phase 
commit, the primary sends it to the backups using the 
communication buffer discussed above. 

The part of a cohort’sstate that affects transaction processing is 
summarized in Figure 1. Each cohort has a status; if it is “active,” it 
can participate in transaction processing, and otherwise it is involved 
in a view change. We say that a cohort is active if its status is 
“active”; otherwise it is inactive. The g&ate consists of all objects 
that constitute the group state. Each object has a unique name 
(relative to the group) and a current value, and also whatever 
information is needed to implement synchronization and recovery. In 

status: status % cohort is active or doing a view change 
gstate: (object) % objects in the group state 
mygroupid: int % the name of the module group 
cur-viewid: viewid % the current viewid 
cur-view: view % the current view 
history: [viewstamp] % indicates events known to cohort 
timestamp: int % the timestamp generator 
buffer: [event-record] % the communication buffer 

where 

Status = oneof[active, view-manager, underling: null] 
object - cuid: int, base: T, lockers: (lock-info)> 
lock-info = clocker: aM, info: oneofjread: null, write: TJ> 
viewid = <cnt: int, mid: int> 
view = <primary: int, backups: (int}, 
viewstamp = <id: viewid. ts: int> 

Flgure 1: Partial State of a Cohort: () denotes a set, [ 1 denotes 
a sequence, oneof means a tagged union wilh component 
tags and types as indicated, and CX= denotes a record, with 

component names and types as indicated. 
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the remainder of this paper, we assume that transactions 
synchronized by means of strict P-phase locking [18] with read and 
write locks. Each object has a base version of some type T; different 
objects can be of different types, but we ignore these differences in 
the paper. A transaction modifies a tentaUve version, which is 
discarded if the transaction aborts and becomes the base version if it 
commits. Thus, in addition to its name and base version, an object 
contains a set of lockers that identifies transactions holding locks on 
the objects, the kinds of locks held, and any tentative versions 
created for them. 

The primary uses the buffer to communicate information about 
events to the backups; the implementation of the buffer guarantees 
reliable delivery of event records to all backups in timestamp order. 
We distinguish between writing and forcing information to the buffer; 
a similar distinction is made in transaction systems that use stable 
storage. Writing means that the information will be delivered to the 
backups at a convenient time; this is accomplished by calling the add 
operation on the buffer. Add takes an event record as an argument. 
It atomically assigns the event a timestamp (advancing the 
timestamp and updating the history in the process) and adds the 
event record to the buffer; it returns the event’s viewstamp. There 
may be concurrent execution within a module, so the implementation 
of add must serialize the use of the buffer and ensure that event 
records are recorded in the buffer in timesramp order. 

The farce-to operation is used to force the buffer. Since 
sometimes it is not necessary to force the entire buffer, the operation 
takes a viewstamp v as an argument. If the viewstamp is not for the 
current view it returns immediately; othenvise it waits until a 
sub-major&y of backups know about all events in the current view 
with timestamps less than or equal to V.&Z.’ A sub-majority is one 
less than a majority of the configuration; if a sub-majority of backups 
knows about an event, then a majority of the cohorts in the 
configuration knows about that event. As mentioned earlier, if a 
majority of cohorts knows some information, the view change 
algorithm guarantees that the information will be known in all 
subsequent views. 

Running transactions requires the collaboration of both clients and 
servers. Clients create transactions, make any remote calls they 
contain, and act as coordinators of two-phase commit. Servers 
process remote calls and participate in two-phase cammft; in 
processing a call, a server may make further calls. 

We assume the system provides a highly-available location server 
that maps Qroupids to configurations; various implementations are 
discussed in [15, 20, 22, 311. * To find a server it has not used 
before, a cohort fetches the configuration from the location server 
and communicates with members of the configuration to determine 
the current primary and viewid. It stores this information in a local 
cache. 

Below we discuss the work done by active primaries of clients and 
servers, other processing at cohorts, and processing of query 
messages. We assume that both clients and servers are replicated; 
we discuss an alternative to replicating clients in Section 3.5. Our 
discussion assumes that transactions are one-level; we discuss 
nested transactions in Section 3.6. 

‘Force-to delays its caller, but other work, including adding and 
forcing the buffer, can still go on at the cohott in other processes. If 
communication with some backups is impossible, the calf of force-to 
will be abandoned, and the cohort will switch to running the view 
change algorithm. 

*Note that the location server defines the limits of availability: no 
module group can be more available than it is. 

3.1 Actlve Prlmarles of Clients 
Recall that we intend to use viewstamps to determine whether a 

transaction can commit. Each time a server finishes processing a 
remote call on behalf of a transaction, sit assigns the call a 
viewstamp. Information about these viewstamps is collected as the 
transaction runs in a data structure called the ,oset, which is a set of 

cgroupid: int, vs: viewstamp> 

pairs. The pser contains an entry for every call made by the 
transaction; a pair cQ, v, indicates that group g ran a call for the 
transaction and as ;igned it viewstamp v. 

The processing at the client’s primary is summarized in Fiiure 2. 
When a transaction is created, it receives a unique transaction 
identifier aid and an empty pset. (We make the aid unique across 
view changes by including mygrcupid and cur-viewid in it.) To make 
a remote call, the system looks up the primary and viewid for the 
group in its cache, initializing the cache if necessary, and then sends 
the call message to the primary. The message contains the viewid 
from the cache, a unique call id (to prevent duplicate processing of a 
single call), and information about the call itself (the procedure name 
and the arguments). 

There are three possible results of such a message. The first, and 
most likely, is a reply message for the call. The reply message 
contains a pset that records cgruupid, viewslamp pairs for this call 

Starting a transactlon: 

Create the transaction aid and an empty pset. 

Maklng a remote call: 
1. Look up the server in th$ cache, updating the cache if 

necessary. Send the call message to the primary; the 
message contains the unique call id and also the 
viewid obtained from the cache. 

2. If a repfy message arrives, add the elements of the 
pset in the reply message to the tran!;action’s pset. 
User code at the client can now continue running. 

3. If there is no reply, abort the transaction: send abort 
messages to the participants (determiined from the 
pset), and add an <“aborted”, aid> record to the buffer. 

4. If the reply indicates that the view has charged, update 
the cache, if possible, and QO to sfep 1. If a more 
recent view cannot be discovered, atlorl the 
transaction as described above. 

Coordinator for two-phase Commit: 
1. Send prepare messages containing tlhe aid and pset to 

the participants, which can be determined from the 
pset. 

2. If all participants agree to commit, release any local 
locks held by the transaction and install its tentative 
versions, add a <“committing”, plist, aid:. record to the 
buffer, where the plist is a list of non-read-only 
participants, and then do a force-fo(new-vs), where 
new-vs is the viewstamp returned by the call on the 
addoperation. Send commif messages to the 
participants; when all of them acknowledge the 
commit, add a <“done*, aid> record to the buffer. 

3. If there is no answer after repeated tries, update the 
cache, if possible, and retry the prepare. If a more 
recent view cannot be discovered, or if any participant 
refuses to prepare, discard any local locks and 
versions held by the transaction and send aborf 
messages to the participants. Add an -?‘aborted”. aid> 
record to the buffer. 

Flgure 2: Processing at the Active Primary of a Client. 
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and any further remote calls made in processing it. The pairs in the 
reply’s pset are added to the transaction’s psef. 

compatible(ps, g, vh) = 
Q p E ps (p.groupid = g 3 

V v E vh (p.vs.id = v.id ti p.vs.ts i v.ts)) 
The second possibility is no reply at all (after a sufficient number 

of probes). In this case, we abort the transaction; we also attempt to 
update the cache, so that the next use of the server will not cause an 
abort. The transaction must abort because we cannot know whether 
the call message would be a duplicate if we sent it to a new primary. 
The message might be a new one, or it might be a duplicate for a Call 
that ran before the view change or was running when the view 
change happened. In the first case, we need to do the call; in the 
second case, we must not redo it. To resolve this uncertainty, we 
aborf the transaction. 

The lhird possibility is a reply indicating that the view has 
changed. In this case, we update the cache and retry the call. We 
assume the message delivery system maintains some connection 
information that enables it to not deliver duplicate messages even in 
the case when the module crashes and recovers between deliveries. 
If duplicate messages are possible, we must abort the transaction In 
this case too. 

When the transaction commits, the client’s primary acts as the 
coordinator of the two-phase commit protocol [19]. It determines 
who the participants are from the psef. It sends the pset in the 
prepare messages to allow each participant to determine whether it 
knows all events of the preparing transaction. 

If all participants agree to prepare, the coordinator adds a 
“committing” record to its buffer and forces the entire buffer to the 
backups. This ensures that the commit wilt be known across a view 
change of the coordinator. The “committing” record lists only the 
participants where the transaction holds write locks, since only these 
must take part in phase two; the reply from a participant indicates 
whether or not it is read-only. Then the coordinator sends commit 
messages, and, when all are acknowledged, adds a “done” record to 
the buffer. Note that user code can continue running as soon as the 
“committing” record has been forced to the backups. 

If the transaction aborts, or if any participant refuses the prepare, 
the coordinator sends abort messages to the participants and adds 
an “aborted” record to the buffer. This record is not really needed 
because a view change at the coordinator that leads to a new 
primary will cause any of the group’s transactions to aboti 
automatically. (To avoid such aborts would require some kind of 
checkpoint mechanism [f7j.) However, the record is useful for query 
processing as discussed in Section 3.4. 

3.2 Active Primaries of Servers 
Servers process remote calls and act as participants in two-phase 

commit. Each time a call completes, the primary assigns it a 
viewstamp, and returns this information in the reply message. The 
primary can agree to prepare only if it knows about all remote calls 
its group has done on behalf of the preparing transaction. It uses its 
history and the pset in the prepare message to determine this. 

Processing at the primary of the server is summarized in Figure 3. 
When the primary receives a call message, tt rejects the call if the 
call’s viewid is not equal to cur-viewid. Otherwise, it creates an 
empty pset and runs the call, possibly making further nested calls as 
described above. When the call completes, it adds a “completed- 
call” record to the buffer; this record identifies each atomic object that 
was read or written in processing the call, together with the type of 
lock obtained and the tentative version if any. Then it adds a pair for 
this call to the call’s pset and returns the psetin the reply message. 

When the primary receives a prepare message, it checks whether 
it knows about all calls made by the transaction to its group by calling 
wmpafi&fe@sef, mygroupid, history): 

If the pser is not compatible with the hisfory, it refuses the prepare. 
Otherwise, it computes the viewstamp of the most recent 
“completed-call” event by calling vs-max(pset, mygmup~~: 

vs_max(ps, 9) = p.vs s.t. 
p E ps & p.groupid = g & V p’ E ps (p’.groupid = g 

3 p’.vs.id < p.vs.id v (p’.vs.id = p.vs.id & p’.vs.ts 5 p.vs.ts)) 

It uses this viewstamp to force the buffer to ensure that all 
“completed-call” events are known to at least a sub-majority of 
backups and then sends an acceptance to the coordinator. 

When it receives a commit message, the primary forces a 
“committed” record to the buffer and then sends an acknowledgment 
to the coordinator. If it receives an abort message, it adds an 
“aborted” record to the buffer. 

3.3 Other Processing at Cohorts 
Cohorts that are not active primaries reject messages sent to them 

by other module groups, except for queries as discussed in the next 
section. The response to the re jetted message COntainS information 
about the current viewid and primary if the cohort knows them (for 
example, if it is a backup in an active view). 

Processing a call: 
1. If the viewid in the call message is not equal to the 

primary’s cur-viewid, send back a rejection message 
containing the new viewid and view. 

2. Create an empty pset. Then run the call. If it makes 
any nested calls, process them as described in Figure 
2. 

3. When the call finishes, add a &ompleted-call”, object- 
list, aid> record to the buffer; the object-list lists all 
objects used by the remote call, together with the type 
of lock acquired and the tentative version if any. Add a 
emygroupid, new-vs> pair to the pset, where new-vs 
is the viewstamp returned by the call on the add 
operation of the buffer, and send back a reply message 
containing the pset. 

Processing a Prepare Message: 
1. If wmpati&le(pset, history, mygroupid), perform a 

forceJo( vs-max(psef, mygroupid)), release read locks 
held by the transaction, and then reply prepared. In 
the reply message, indicate whether the transaction 
held only read locks at this participant. If the 
transaction is read-only, add a <“committed”, aid> 
record to the buffer. 

2. Otherwise, send a message to the coordinator refusing 
the prepare and abort the transaction: discard its locks 
and versions and add an c”abort”. aid> event record to 
the buffer. 

PrOceSSlng a Commit Message: 
1. Release locks and install versions held by the 

transaction. Add a c’%ommitted”, aid> record to the 
buffer, do a force-to(new-vs), where new-vs is the 
VieWStamp return by add, and send a done message to 
the coordinator. 

Processing an Abort Message: 
1. Discard locks and versions held by the aborted 

tranSaCtiOn and add an <“aborted”, aid> record to the 
buffer. 

Figure 3: Processing at the Active Primary of a Server, 
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Active backups receive messages containing information from the 
communication buffer. They process event records in timestamp 
order, updating the state accordingly. The backup can simply store 

the records, or it can perform them, for example, by setting locks and 
Creating versions for a “completed-call” record. There is a tradeoff 
here between the amount of processing at the backups, and how 

much work is needed during a view change before a backup can 
become a primary. Perhaps a good compromise is to store 
“completed-call” records (as part of the gs&fe) until the “committed” 
or “aborted” record for the call’s transaction is received; at this point 
records for a committed transaction would be processed, while those 
for an aborted transaction would be discarded. 

3.4 Queries 
Our implementation does not guarantee that all messages about 

transaction events arrive where they might be needed. For example, 
if the transaction aborts, we send abort messages to the participants, 
but do not guarantee they will arrive. Instead, a cohort that needs to 
know whether an abort occurred sends a query to another cohofi 
that might know. For example, the primary of the participant can 
send a query to the primary of the coordinator. 

To speed up the processing of queries, we allow any cohort to 
respond to a query whenever it knows the answer. For example, a 
cohort that is not a primary may know about the abort of a 
transaction because B received the “aborted” event record from the 
primary. 

3.5 Replicated Clients 
The algorithms above assumed that both the client and the server 

are replicated. It is good to replicate servers, since they do work on 
behalf of many clients. Replicating a client that is not a server, 
however, may not be worthwhile. 

If the client is not replicated, it is still desirable for the coordinator 
to be highly available, since this can reduce the “window of 
vulnerability” [30] in two-phase commit. This can be accomplished 
by providing a replicated “coordinator-server.” The client 
communicates with such a server when it starts a transaction, and 
when t commits or aborts the transaction. The coordinator-server 
carries out two-phase commit as described above on the client’s 
behalf. It also responds to queries about the outcome of the 
transaction; its groupid is part of the transaction’s aid, so that 
participants know who it is. In answering a query about a transaction 
that appears to still be active, tt would check wtth the client, but if no 
reply is forthcoming, it can abort the transaction unilaterally. 

3.6 Nested Transactlons 
The protocol discussed above is quite permisstve about when a 

transaction can prepare, but much less permissive when a client 
sends a message to a cohort that does not respond. A lack of 
response causes the entire transaction to abort. Such an abort can 
cause lots of work to be lost. 

Obviously, there are ways to reduce the number of situations in 
which the abort happens. For example, we couM force a special 
“start call” record to the backups before making a nested remote call. 
It would be safe to run the call at the new primary lf there were no 
such record, since even if the call ran before the view change, its 
effects were bcal lo this group and therefore have been undone by 
the view change. Atternatively, the client could do a probe before 
making the call to determine the current primary. However, neither 
of these techniques is satisfactory, since they delay normal 
processing. 

A better approach is to use nested transactions [lo, 28.301. 
Nested transactions have two desirable properties. First, they allow 

concurrency within a transaction in a way that allows the concurrent 
activities to be serialized. Second, they provide a checkpointing 
mechanism: if some part of a transaction cannot complete, we can 
avoid aborting the entire transaction by running that part as a 
subactiin. 

Checkpointing is what allows us to minimize the effects of view 
changes. If the call is made as a subaction, we need not abort the 
entire transaction if there is no reply. Instead. we can abort just the 
subaction, and then do the call again as a new subaction. An 
algorithm for our ,nethod in a system with nested transactions is 
described in[32]: lt is based on the implementation of nested 
transactions in Argus (26, 281. 

Subactions are an economical way to cope with view changes. 
They are not expensive to implement [27j; they are much cheaper 
than either of the alternatives for avoiding aborts sketched above. 
Furthermore, we need to abort and redo a call subaction Only when 
the view changes; thus we do extra work only when the problem 
arises. 

3.7 Dlscusslon 
There is a one-to-one correspondence between event records and 

information written to stable storage by a coniventional transaction 
system and therefore our system works because a conventional one 
does. The “completed-call” records are equivalent to the data 
records that must be forced to stable storage before preparing, and 
the “commit” and “abort” records are the same as their stable 
storage counterparts. The only difference is our treatment of 
prepares, since we have no prepare record. In a conventional 
system, the prepare record tells the participant #after a crash whether 
a transaction that ran there before a crash is ablle to commit. We do 
not need the prepare record because we use the primary’s history 
and the psef in the prepare message to determine what to do. 

Even when a transaction only has read locks, we must force the 
“completed-call” records to the backups when preparing to ensure 
that read locks are held across a view change. A view change may 
have happened without this primary being aware of it. and there may 
be a new primary already processing user requests in the other view. 
Furthermore, the preparing transaction’s read-locks may not be 
known in the new view, so the new primary may allow other 
transactions to obtain conflicting locks. Forcing the buffer 
guarantees that the prepare can succeed only if the transaction’s 
locks survived the view change. Without the force, the prepare could 
succeed at the old primary even though the locks did not survive. fn 
essence, not doing the force is equivalent to not sending the prepare 
message to a read-only participant; such prepare messages are 
needed to prevent violations of two-phase locking. 

We believe that our method will perform better than a non- 
replicated system. Remote calls in our system run only at the 
primary and need not involve the backups and therefore their 
performance is the same as in a non-replicated system. We expect 
that pfepafe messages are usually processed entirely at the primary 
because the needed “completed-call” event records for remote calls 
of the preparing transaction will already be stored at a sub-majority 
of cohorts; otherwise, the primary must watt while the relevant part of 
the buffer is forced to the backups. Careful engineering is needed 
here to provide both speedy delivery and small numbers of 
messages. Committing a transaction requires forcing the 
“committed” record to the coordinators backups; the remainder of 
the protocol can run in background. For both preparing and 
committing, our method will be faster than using non-replicated 
clients and sewers if communication is faster than writing to stable 
storage, which is often the case provided that the number of backups 
is small. 
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4 Changing Views 
Transaction processing depends upon forcing information to 

backups so that a majority of cohorts know about particular events. 
The job of the view change algorithm is to ensure that events known 
to a majority of cohorts survive into subsequent views. It does this 
by ensuring that every view contains at least a majority of cohorts 
and by starting up the new view in the latest possible state. 

If every view has at least a majority of cohorts, then it contains at 
least one cohort that knows about any event that was forced to a 
majority of cohorts. Thus we need only make sure that the state of 
the new view includes what that cohort knows. This is done using 
viewstamps: the state of the cohort with the highest viewstamp for 
the previous view is used to initialize the state in the new view. This 
scheme works because event records are sent to the backups in 
timestamp order, and therefore a cohort with a later viewstamp for 
some view knows everything known to a cohort with an earlier 
viewstamp for that view. 

The view change algorithm requires some information to be 
recorded in the cohort state. This information is summarized in 
Figure 4, which shows the complete cohort state. Most of this state 
is volatile and will be lost in a crash; the ramifications of such 
crashes are discussed in Section 4.2. The exceptions are mymid, 
configuration, and mygroupid, which are stored on stable storage 
when the cohort is first created, and cur-viewid, which is stored at 
the end of a view change. When a cohort recovers from a crash, it 
initializes up-to-dale to be false, indicating that its gsfate is not up to 
date, and initializes max-wiewid to cur viewid. Then it initializes 
status to be “view-manager; this causesft to start a view change as 
discussed below. 

Cohorts send periodic “I’m Alive” messages to other cohorts in the 
configuration. If a cohort notices that it is not communicating with 
some other cohort in its view, or if ft notices that it is communicating 
with a cohort that it could not communicate with previously, or if ft 
has just recovered from a crash, ft initiates a view change. It is the 
manager Of this protocol; the other, cohorts are the underlings. 

An overview of the algorithm run by a cohort is shown in Figure 5. 
The figure shows what the cohort does in each of its three states, 
“active,” “view-manager,” and “underling.” In the “active” state, the 
cohotl waits for messages to arrive; the receive statement selects 
an atbiirary waiting message for delivery to the program, and 
dispatches to the arm that matches the name of that message. If the 

status: status 
gstate: (object) 
up-to-date: bool 
configuration: [int) 
mymid: int 
mygroupid: int 
cur-viewid: viewid 
cur-view: view 
history: [viewstamp] 
max-viewid: viewid 
timestamp: int 
buffer: [event-recordj 

% cohort is active or doing a view change 
% objects in the group’s state 
% true if gstate is meaningful 
% modules in the configuration 
% name of this module 
% name of the group 
% current viewid 
% current view 
% indicates events known to cohort 
% highest viewid seen so far 
% the timestamp generator 
% the communication buffer 

where 

view = status = oneoflactive, view-manager, underling: null] 
object = euid: int, base: T, lockers: (lock-info}> 
lock-info - clocker: aid, info: oneof[read: null, wrtte: Tj> 
viewid - <cnt: int. mid: inb 
view = cprimaty: int, backups: (in+- 
viewstamp = cid: viewid, ts: inb 

cohort receives a “change” message, this means that the exchange 
of “I’m alive” messages indicates the need for a view change; it 
becomes the view manager by changing its StatUS to 
“view manager.” If it receives an invitation to join a view, and if the 
new view’s viewid is greater than any it has seen so far, it accepts 
the view and becomes an underling by changing its status to 
“underling.” The procedure do-accept records the new viewid in 
max-viewid and sends an acceptance message. There are two 
kinds of acceptance messages, “normal” ones, and *crashed” ones. 
If the cohort is up to date (i.e., up-to-date = true), it SendS an 
acceptance containing its current viewstamp and an indication of 
whether it is the primary in the current view. Otherwise, it sends a 
“crash-accept” response; this response contains only its viewid, and 
means that it has forgotten its gstate. 

If it is a view manager, the cohorl sends invitations to join the new 
view to all other cohorts, and waits for responses. The procedure 
make_invifations creates a new viewid by pairing mymid with a 
number greater than max-viewid.cnf and stores it in max-viewid. 
Notice that the new viewid will be different from any produced by 
another cohort. Then it sends invitations containing max-viewid to 
the other cohorts, records its own response (“crashed” or “normal”), 
and collects the other responses. If an invitation with a higher viewid 
arrives, it signals invited, returning the new viewid and the mid of the 
inviter. In this case, the view manager accepts the invitation and 

while true do 
tagcaee status 

tag active: 
receive % accept a message 

when change: status := view=manager 
when invite (vid: viewid, m: mid): 

If vid < max viewid then conllnue end % ignore the msg 
do-accept(vid, m) 
status := underling 

others: % transaction messages handled here 
end % receive 

tag view-manager: 
responses := make-invitations( ) 

except when invited (vid: viewid, m: mid): 
do-accept(vid, m) 
status := underling 
continue % continue at next iteration 
end except 

v: view := form-view(responses) 
except when cannot: continue end % wait and then try again 

If v.primafy = mymid 
then start-view(v) 

status :- active 
else send init-view(max-viewid. v) to v.primary 

status := underling 
end % if 

tag underling: 
await-view( ) 

except 
when timeout: 

status := view-manager 
continue 

when Invited (vid: viewid, m: mid): 
do-accept(vid, m) 
continue 

when becomegrimary(v: view): start-view(v) 
end % except 

status := active 

end % tagcase 
end % while 

Flgure 4: State of a Cohort. Figure 5: The View Change Algorithm. 



becomes an underling. Otherwise, when all cohorts accept the 
invitation or a timeout expires, make-invitations returns the 
responses. In this case, the view manager attempts to form a new 
view (the details are discussed below). If the attempt fails, 
(form_view signals cannor), the cohort attempts another view 
formation later. If the attempt succeeds, and if the view manager is 
not the new primary, it sends an “init-view” message to the new 
primary, and becomes an underling. Otherwise it starts the new 
view: it updates cur-view and cur-viewid, stores zero in timestamp 
and appends <cur-viewid, (h to the history, and writes cur-viewidto 
stable storage. Then it initializes the buffer to contain a single 
“newview” event record; this record contains cur-view, history, and 
gstate. Finally, it becomes active. 

View formation can succeed only if two conditions are satisfied: at 
least a majority of cohorts must have accepted the invitation, and at 
least one of them must know all forced information from previous 
views. The latter condition may not be true if some acceptances are 
of the “crashed” variety. For example, suppose there are three 
cohorts, A, 8 and C, and that view vl = <primary: A, backups: IS, 
C+. Suppose that A committed a transaction, forcing its event 
records to f? but not C, then A crashed and recovered, and then a 
partition occurred that separated 6 from A and C. In this case we 
cannot form a new view until the partition is repaired because A hes 
lost information and there are forced events that C does not know. 

The correct rule for view fofination is: a majority of cohorts have 
accepted and 

1. a majority of cohorts accepted normally, or 

2. crash-viewid -Z normal-viewid, or 

3. crash-viewid = normal-viewid and the primary of view 
normal-viewid has done a normal acceptance of the 
invitation. 

Here crash-viewid is the largest viewid returned in a “crashed 
acceptance, and normalviewid is the largest viewstamp returned in 
a “normal” acceptance. Condition (1) says we can ignore crashed 
acceptances if we have enough normal ones; condition (2) says we 
can ignore crashed acceptances if they are from old views; and 
condition (3) says we can ignore a crashed acceptance if we have 
information from the primary of its view, because the primary always 
knows at least as much as any backup. 

If the view can be formed, the cohort returning the largest 
viewstamp (in a “normal” acceptance) is selected as the new 
primary; the old primary of that view is selected if possible, since this 
causes minimal disruption in the system. 

A cohort in the underling state Calls await_view to wait to find out 
what happened to the new view. If no message arrives within some 
interval, await_view signals timeout and the cohort becomes the view 
manager and attempts to form another view. If an invitation for a 
higher viewid arrives, await_view signals invited, and the cohort 
accepts the invitation. If an “init-view” message containing a viewid 
equal to maw_viewid arrives, await_view signals becomegrimary; 
the cohort initializes itself to be a primary as discussed above, and 
becomes active. If a “newview” record for a view with viewid equal 
to max-viewid arrives from the buffer, await-view inftializes the 
cohort state before returning: it initializes cur-view, wr-viewid, 
hisfory and gstate from the information in the message, writes 
cur-viewid to stable storage, sets up-lo-date to true (to indicate that 
it now has information in gsnte), and returns normally. Then the 
cohoR becomes active. 

4.1 Discussion 
When failures or recoveries are detected by the system, the view 

change protocol runs in each affected module group. The protocol 
requires relatively little message-passing in the simple case of no 
additional failures and no concurrent view managers. One round of 

messages is all that is needed when the manager is also the primary 
in the last active view; otherwise, one round plus one message is 
needed. 

The system performs correctly even if there are several active 
primaries. This situation could arise when them is a panlion and the 
old primary is slow to notice the need for a view change and 
continues to respond to client requests even after the new view is 
formed. The old primary will not be able to prepare and commit user 
transactions, however, since it Cannot force their effects to the 
backups. 

If the same cohort is the primary both befo,re and after the view 
change, then no user work is lost in the change. Otherwise, we 
guarantee the following: Transactions that prepared in the okl view 
will be able to commit, and those that committed will still be 
committed. Transactions that had not yet prepared before the 
change may be able to prepare afterwards, depending on whether 
the completion events of the remote calls are known in the new view. 
Aborts of transactions may have been forgotten, but delivery of abort 
messages is not guaranteed in any case: recovery from lost 
messages is done by using queries (see Section 3.4). To minimize 
disruption while a view change is happening, or when there is no 
active view, queries can be answered by any cohort that knows the 
answer. 

The algorithm is tolerant to several cohorts simultaneously acting 
as managers; the one that chooses the higher viewid will ultimately 
succeed. Having several managers will slow things down, since 
there will be more message traffic, but the slow down will be slight. 
Furthermore, we can avoid concurrent managers to some extent by 
various policies. For example, the cohorts could be ordered, and a 
cohort would become a manager only if all higher-priority cohorts 
appear to be inaccessible. 

However, the algofhm is not tolerant of lost messages and slow 
responses. For example, suppose a manager waits only until it 
hears from a sub-majority even though there are other cohorts that 
could respond. This would result in those other cohorts being 
excluded from the new view, which in turn will mean another round of 
view changing will occur shortly. If that next view change also 
excludes some potential members, that will lead to another view 
change, and so on. 

To avoid such a situation, a manager should use a fairly long 
timeout while it waits to hear from all cohorts8 that the “I’m alive” 
messages indicate should reply. Similarly, an underling should use a 
fairly long timeout before it becomes a manager. In addition, it is 
worthwhile to mask lost messages by sending duplicates, so that a 
lost message won’t trigger another view change. 

A final point is that not all view changes descrfbed above really 
need to be done. One special case is wheln an active primary 
notices that it cannot communicate wfth a backup, but it still has a 
sub-majority of other backups. In this case, the primary can 
unilaterally exclude the inaccessible backup from the view. Similarly, 
an acttte primary can unilaterally add a backup to its view. View 
changes are really needed only when the primary is lost, or when a 
current active view loses enough members that it is no longer a 
majority. In the latter case, we need not do a view change either; we 
make the primary inactive since this stops it from working on 
transactions when it wilt not be able to commit them. 

4.2 Stable Storage 
In our algorithm we assumed that most of a cohort’s state was 

volatile. Such an assumption means that if a majority of cohorts are 
crashed “simultaneously,” we may lose information about the module 
group’s state. Here we view a cohort as crashed if either it is really 
crashed, or if it has recovered from a crash, but its up-to-dare 



variable is false. Note that a catastrophe does not cause a group to 
enter a new view missing some needed information. Rather, it 
causes the algorithm to never again form a new view. 

Whether it is worthwhile to worry about catastrophes depends on 
the likelihood of occurrence and the importance of the information in 
the group state. The considerations here are similar to decisions 
about when it is necessary to store information in stable storage in a 
nonreplicated system, except that replication makes the probability of 
catastrophe smaller to begin with. . 

If protection against catastrophes is desired, there are various 
techniques that could be tried. For example, we might use stable 
storage only at the primary or we might supply each cohort with a 
universal power supply and have them write information to 
nonvolatile storage in the background. 

5 Related Work 
In this section we discuss the relationship of our approach to other 

work on replication and view changes. 

The best known replication technique is voting [16,21]. With 
voting, write operations are usually performed at all Cohorts, and 
reads are performed at only one cohort, but in general writes can be 
performed at a majority of cohorts and reads at enough cohorts that 
each read will intersect each write at at least one cohort. The write 
ail/read one choice is preferred when reads are much more common 
than writes. 

Our method is faster than voting for write operations since we 
require fewer messages. Also, we avoid the deadlocks that can 
arise if messages for concurrent updates arrive at the cohorts in 
different orders. Our method will also be faster for read operations if 
these take place at several cohorts. If reads take place at just one 
cohorl, voting may outperform our method because reading can 
occur at any cohort, while reading in our scheme must happen at the 
primary, which could become a performance bottleneck. On the 
other hand, the real source of a bottlenedc is a node, not a cohort, 
and we can organize our system so that primaries of different groups 
usually run on different nodes. Furthermore, the system can be 
Configured to place primaries at more powerful nodes most of the 
time. This organization Could lead to better performance than voting. 

Voting allows operations to continue running as long as the 
needed number of cohorts are up and accessible. However, when 
writes must happen at all Cohorts, the lost of a single cohort can 
cause writes to become unavailable. The virtual partitions 
pro~ocol[l2, 131 was invented to solve this problem. Our view 
change protocol is a simplification and modification of this protocol 
and has better performance. The virtual partitions protocol requires 
three phases. The first round establishes the new view, the second 
informs the cohorts of the new view, and in the third, the Cohorts all 
communicate with one another to find out the current state. We 
avoid extra work by using viewstamps in phase 1 (the first round) to 
determine what each cohort knows. Our technique can be used in 
conjunction with voting when writes are done at all members of a 
view. Just as we use viewstamps, in such a system timestamps 
assigned when transactions commit could be used to determine 
which replica has the most information about transaction Commits 
(the timestamps would not contain information about the state of 
active transactions). Systems in which writes only go to a majority 
are more difficult to optimize in this way since there is usually no 
cohort whose state Contains at least as much information as the 
state of any other cohort. 

Virtual partitions force transactions that were active across a view 
change to abort. For example, a transaction that did a remote call in 
the old view will not be able to prepare in the new view. We use 
viewstamps to avoid the abort and we rely on the fact that knowledge 
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of later events implies knowledge of earlier ones. A total order on 
viewstamps would be costly to implement with voting, since there iS 
no single place (like our primary) to generate the viewstamp. it might 
be possible to use multipart viewstamps (23, 291, however. This is a 
matter for future research. 

A different approach to replication is taken in Isis [4, 51. Isis works 
only in a local area network because its view change protocol does 
not tolerate partitions. In Isis, calls are sent to a single cohort. If the 
called procedure is a read, the cohort acquires a read lock IOCally 
and performs the operation locally. If the procedure is a write, the 
cohort acquires write locks at all cohorts before doing the Call. (Write 
locks are acquired using a two-phase algorithm that prevents 
deadlocks in the case of concurrent writes.) Then the cohoR 
performs the call. In either case, the Cohort communicates the 
effects of reads3 and writes to other cohorts in background ‘mode, 
and piggybacks them on reply messages. This piggybacked 

information accompanies all future client messages, including calls to 
other servers as well as prepare and commit messages. This 
means, for example, that if the prepare message is sent to a different 
cohort from the one that performed the call, the information about the 
effect of the call wilt be present at the cohort doing the prepare, SO 
there will be no need for that cohort to wait for the background 
message to arrive, and no possibility that it would need to reject the 
prepare. Unlike our pset, however, piggybacked information in Isis 
cannot be discarded when transactions commit. A disadvantage of 
Isis is the large amount of extra information flowing on every 
message, and the difficulty in garbage collecting that information. 

Our method avoids these problems at the Cost of a possible delay 
at prepare time (to force the buffer) and of an occasional abort when 
there is a view change. The viewstamps in our method represent the 
information flowing in Isis. However, since the viewstamps only 
indicate that certain events have occurred, but not what these events 
are, we must sometimes wait for information about its events to 
arrive in buffer messages. Also, we must sometimes abort a 
transaction because information about its events is lost in a view 
change. 

In Cooper’s replicated remote procedure calls [9], each procedure 
call is replicated and executed at every cohort of a server. This 
technique has high overhead during normal system operation: il 
requires lots of messages, is wasteful of computation, and requires 
that programs be deterministic. The advantage of the method is that 
recovery is inexpensive. 

Finally, Tandem’s Nonstop systemI2, 7,8] and Ihe Auragen 
system [6] are primary copy methods but there is just one backup, so 
they can survive onfy a single failure. Furlhermore, the 
primary/backup pair must reside at a single node (containing multiple 
processors). If these constraints are acceptable, these methods are 
efficient. Ours is more general. 

6 Conclusions 
This paper has described a new replication method for providing 

high availability. The method performs well in the normal case, does 
view changes efficiently, and loses little information in a view 
change. We expect the performance of our method to be 
comparable to that of a system in which modules are not replicated 
and better than most other replication methods. At present we are 
implementing our method; we will be able to run experiments about 
system performance when our implementation is complete. 

Our view change algorithm is highly likely not to lose work in a 
view change. If a transaction’s effects are known at the new primary, 

3The effect of a read is that a read lock has been acquired. 



the transaction can commit. Our notion of viewstamps allows us to 
determine inexpensively how much each cohort knows and whether 
a transaction can be committed. Our policy of choosing the primary 
of the last active view to be the new primary whenever possible 
avoids losing work altogether; even remote calls that were running 
before the view change can continue to run afterwards. Note that 
the probability of aborts can be decreased further if desired. There is 
a tradeoff here between loss of information in view changes and 
speed of processing calls. For example, if “completed call” records 
were forced to the backups before the call returned, there would be 
no aborts due to view changes, but calls would be processed more 
slowly. 

Choosing the primary of the old view to be the new primary 
minimizes information loss and makes the view change protocol run 
quickly. On the other hand, we could modify the protocol to always 
choose a particular cohort to be the primary if possible. Such a 
policy matches the needs of some applications. The policy would 
not cause loss of information: if the old primary is a member of the 
new view, all its events will survive into the new view. However, 
work in progress at the old primary would be lost in the change 
(unless some additional mechanism is included); this includes 
aborting transactions for which the primary is the coordinator. In 
addition, a few extra messages will sometimes be needed in the view 
change protocol. 

We presented our algorithm in a system with one-level 
transactions. However, as noted earlier, such a system can lead to 
aborts in which a substantial amount of work can be lost. The 
problem arises when a client gets no reply for a remote call; the 
transaction must be aborted to avoid running a call more than once. 
Nested transactions prevent the abort of the top level transaction, 
and, furthermore, do so efficiently. 

In defining our algorithm, we chose to avoid the use of stable 
storage as much as possible because we were interested in 
understanding the extent to which having several replicas eliminated 
the need for stable storage. We found that catastrophes (loss of a 
group’s state) that would not happen if events were recorded on 
stable storage could sometimes occur in our system. The probability 
of a catastrophe depends on the configuration, e.g., on whether the 
cohort’s nodes are failure independent. The algorithm can be 
modified in various ways to reduce the probability of catastrophe if it 
is considered to be too high. 

The use of viewstamps is an interesting compromise between loss 
of work in failures and extra information. Isis represents one 
extreme here: no work is lost when there is a failure but large 
amounts of information must flow around the system. Other systems 
have no information like viewstamps and must abort all transactions 
affected by a failure. 

Viewstamps may also be worthwhile in a nonreplicated System. In 
such a system, records containing the effects of Calls could be 
written to stable storage in background mode; the records, like event 
records, would contain viewstamps. When the prepare message 
arrives, it would only be necessaty to force the records; no delay 
would be encountered if the records had already been Written. A 
crash would not cause active transactions to abort aUtOmatiCally; 
instead, queries would be sent to coordinators to determine the 
outcomes. The result would be a system that is more tolerant Of 
crashes (by avoiding aborts) and also faster at prepare time. 
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