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Abstract
No secure network file system has ever grown to span the In-
ternet. Existing systems all lack adequate key management
for security at a global scale. Given the diversity of the In-
ternet, any particular mechanism a file system employs to
manage keys will fail to support many types of use.
We propose separating key management from file system

security, letting the world share a single global file system no
matter how individuals manage keys. We present SFS, a se-
cure file system that avoids internal key management. While
other file systems need key management to map file names
to encryption keys, SFS file names effectively contain public
keys, making them self-certifying pathnames. Key manage-
ment in SFS occurs outside of the file system, in whatever
procedure users choose to generate file names.
Self-certifying pathnames free SFS clients from any notion

of administrative realm, making inter-realm file sharing triv-
ial. They let users authenticate servers through a number
of different techniques. The file namespace doubles as a key
certification namespace, so that people can realize many key
management schemes using only standard file utilities. Fi-
nally, with self-certifying pathnames, people can bootstrap
one key management mechanism using another. These prop-
erties make SFS more versatile than any file system with
built-in key management.

1 Introduction
This paper presents SFS, a secure network file system de-
signed to span the Internet. SFS prevents many vulnerabil-
ities caused by today’s insecure network file system proto-
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cols. It makes file sharing across administrative realms triv-
ial, letting users access files from anywhere and share files
with anyone. Most importantly, SFS supports a more di-
verse range of uses than any other secure file system. It
can meet the needs of software vendors, unclassified mili-
tary networks, and even students running file servers in their
dorm rooms. In all cases, SFS strives to avoid cumbersome
security procedures that could hinder deployment.

Few people use secure network file systems today, despite
the fact that attackers can easily tamper with network traffic.
For years, researchers have known how to design and build
file systems that work over untrusted networks (for instance
Echo [4]). If such a file system could grow to span the Inter-
net, it would let people access and share files securely with
anyone anywhere. Unfortunately, no existing file system has
realized this goal.

The problem lies in the fact that, at the scale of the In-
ternet, security easily becomes a management and usability
nightmare. Specifically, there exists no satisfactory means of
managing encryption keys in such a large and diverse net-
work. The wrong key management policy harms security or
severely inconveniences people. Yet, on a global scale, dif-
ferent people have vastly different security needs. No single
approach to key management can possibly satisfy every user.

Most secure systems limit their usefulness by settling for a
particular approach to key management. Consider how few
people run secure web servers compared to ordinary ones.
Establishing a secure web server with SSL involves signif-
icant time, complexity, and cost. Similarly, in the domain
of remote login protocols, anyone who has used both Ker-
beros [29] and the decentralized ssh [34] package knows how
poorly the Kerberos security model fits settings in which user
accounts are not centrally managed. Unfortunately, most se-
cure file systems come tightly coupled with a key manage-
ment system that closely resembles either Kerberos or SSL.

SFS takes a new approach to file system security: it re-
moves key management from the file system entirely. SFS
introduces self-certifying pathnames—file names that effec-
tively contain the appropriate remote server’s public key. Be-
cause self-certifying pathnames already specify public keys,
SFS needs no separate key management machinery to com-
municate securely with file servers. Thus, while other file
systems have specific policies for assigning file names to en-
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cryption keys, SFS’s key management policy results from the
choice users make of which file names to access in the first
place.

SFS further decouples user authentication from the file
system through a modular architecture. External programs
authenticate users with protocols opaque to the file system
software itself. These programs communicate with the file
system software through well-defined RPC interfaces. Thus,
programmers can easily replace them without touching the
core of the file system.

Pushing key management out of the file system lets ar-
bitrary key management policies coexist on the same file
system, which in turn makes SFS useful in a wide range
of file sharing situations. This paper will describe nu-
merous key management techniques built on top of SFS.
Two in particular—certification authorities and password
authentication—both fill important needs. Neither could
have been implemented had the other been wired into the
file system.

Without mandating any particular approach to key man-
agement, SFS itself also provides a great key management
infrastructure. Symbolic links assign human-readable names
to self-certifying pathnames. Thus, SFS’s global namespace
functions as a key certification namespace. One can realize
many key management schemes using only simple file utili-
ties. Moreover, people can bootstrap one key management
mechanism with another. In practice, we have found the
ability to combine various key management schemes quite
powerful.

We implemented SFS focusing on three major goals: se-
curity, extensibility, and portability. We achieved portabil-
ity by running in user space and speaking an existing net-
work file system protocol (NFS [23]) to the local machine.
As a result, the SFS client and server software run on most
UNIX platforms. We sacrificed performance for portability
in our implementation. Nonetheless, even from user-space,
SFS performs comparably to NFS version 3 on application
benchmarks. Several of the authors have their home directo-
ries on SFS and perform all their work on it.

2 Design

SFS’s design has a number of key ideas. SFS names files
with self-certifying pathnames that allow it to authenticate
servers without performing key management. Through a
modular implementation, SFS also pushes user authentica-
tion out of the file system. SFS itself functions as a conve-
nient key management infrastructure, making it easy to im-
plement and combine various key management mechanisms.
Finally, SFS separates key revocation from key distribution,
preventing flexibility in key management from hindering re-
covery from compromised keys. This section details the de-
sign of SFS.

2.1 Goals
SFS’s goal of spanning the Internet faced two challenges: se-
curity and the diversity of the Internet. Attackers can easily
tamper with network traffic, making strong security neces-
sary before people can trust their files to a global file system.
At the same time, SFS must satisfy a wide range of Inter-
net users with different security needs. It is not sufficient for
SFS to scale to many machines in theory—it must also sat-
isfy the specific needs of diverse users on the Internet today.
In short, SFS needs three properties to achieve its goals: a
global file system image, security, and versatility.

2.1.1 Global file system image

SFS’s goal of a single global file system requires that it look
the same from every client machine in the world. It must
not matter which client a person uses to access her files—
a global file system should behave the same everywhere.
Moreover, no incentive should exist for sites to subvert the
global image by creating an “alternate” SFS (for instance,
out of the need to have a different set of servers visible).

To meet this goal, we stripped the SFS client software of
any notion of administrative realm. SFS clients have no site-
specific configuration options. Servers grant access to users,
not to clients. Users can have accounts on multiple, indepen-
dently administered servers. SFS’s global file system image
then allows simultaneous access to all the servers from any
client.

2.1.2 Security

SFS splits overall security into two pieces: file system se-
curity and key management. SFS proper provides only file
system security. Informally, this property means that attack-
ers cannot read or modify the file system without permission,
and programs get the correct contents of whatever files they
ask for. We define the term more precisely by enumerating
the assumptions and guarantees that SFS makes.

SFS assumes that users trust the clients they use—for in-
stance, clients must actually run the real SFS software to get
its benefits. For most file systems, users must also trust the
server to store and return file data correctly (though pub-
lic, read-only file systems can reside on untrusted servers).
To get practical cryptography, SFS additionally assumes
computationally bounded adversaries and a few standard
complexity-theoretic hardness conjectures. Finally, SFS as-
sumes that malicious parties entirely control the network.
Attackers can intercept packets, tamper with them, and in-
ject new packets onto the network.

Under these assumptions, SFS ensures that attackers can
do no worse than delay the file system’s operation or conceal
the existence of servers until reliable network communica-
tion is reestablished. SFS cryptographically enforces all file
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access control. Users cannot read, modify, delete, or oth-
erwise tamper with files without possessing an appropriate
secret key, unless anonymous access is explicitly permitted.
SFS also cryptographically guarantees that results of file sys-
tem operations come from the appropriate server or private
key owner. Clients and read-write servers always communi-
cate over a low-level secure channel that guarantees secrecy,
data integrity, freshness (including replay prevention), and
forward secrecy (secrecy of previously recorded encrypted
transmissions in the face of a subsequent compromise). The
encryption keys for these channels cannot be shortened to
insecure lengths without breaking compatibility.

File system security in itself does not usually satisfy a
user’s overall security needs. Key management lets the user
harness file system security to meet higher-level security
goals. The right key management mechanism depends on
the details of a user’s higher-level goals. A user may want to
access a file server authenticated by virtue of a pre-arranged
secret password, or else the file system of a well-known com-
pany, or even the catalog of any reputable merchant selling a
particular product. No key management mechanism satisfies
all needs. Thus, SFS takes the approach of satisfying many
key management mechanisms; it provides powerful primi-
tives from which users can easily build a wide range of key
management mechanisms.

2.1.3 Versatility

SFS should support as broad a range of uses as possible—
from password-authenticated access to one’s personal files to
browsing well-known servers. In all cases, SFS must avoid
unnecessary barriers to deployment. In particular, anyone
with an Internet address or domain name should be able to
create a new file server without consulting or registering with
any authority.

SFS achieves versatility with three properties: an egalitar-
ian namespace, a powerful set of primitives with which to
implement key management, and modularity. Though SFS
gives every file the same name on every client, no one con-
trols the global namespace; everyone has the right to add a
new server to this namespace.

SFS’s secure, global namespace also facilitates a broad ar-
ray of key management schemes. One can implement many
schemes by simply creating and serving files over SFS. SFS
also lets users employ arbitrary algorithms during file name
resolution to look up and certify public keys. Different users
can employ different techniques to certify the same server;
SFS lets them safely share the file cache.

Finally, SFS has a modular implementation. The client
and server are each broken into a number of programs that
communicate through well-defined interfaces. This architec-
ture makes it easy to replace individual parts of the system
and to add new ones—including new file system and user-
authentication protocols. Several pieces of client functional-

ity, including user authentication, occur in unprivileged pro-
cesses under the control of individual users. Users therefore
have a maximal amount of configuration control over the file
system, which helps eliminate the need for clients to know
about administrative realms.

2.2 Self-certifying pathnames
As a direct consequence of its design goals, SFS must cryp-
tographically guarantee the contents of remote files without
relying on external information. SFS cannot use local con-
figuration files to help provide this guarantee, as such files
would violate the global file system image. SFS cannot re-
quire a global authority to coordinate security either, as such
an authority would severely limit versatility. Individual users
might supply clients with security information, but this ap-
proach would make sharing a file cache very difficult be-
tween mutually distrustful users.

Without external information, SFS must obtain file data
securely given only a file name. SFS therefore introduces
self-certifying pathnames—file names that inherently spec-
ify all information necessary to communicate securely with
remote file servers, namely a network address and a public
key.

Every SFS file system is accessible under a pathname of
the form Location HostID. Location tells an SFS
client where to look for the file system’s server, whileHostID
tells the client how to certify a secure channel to that server.
Location can be either a DNS hostname or an IP address.
To achieve secure communication, every SFS server has a
public key. HostID is a cryptographic hash of that key and
the server’s Location. HostIDs let clients ask servers for their
public keys and verify the authenticity of the reply. Knowing
the public key of a server lets a client communicate securely
with it.

SFS calculates HostID with SHA-1 [8], a collision-
resistant hash function:

HostID SHA-1 (“HostInfo”, Location, PublicKey,
“HostInfo”, Location, PublicKey)

SHA-1 has a 20-byte output, much shorter than public keys.
Nonetheless, finding any two inputs of SHA-1 that pro-
duce the same output is believed to be computationally in-
tractable.1 Thus, no computationally bounded attacker can
produce two public keys with the same HostID; HostID ef-
fectively specifies a unique, verifiable public key. Given this
scheme, the pathname of an SFS file system entirely suffices
to communicate securely with its server.

Figure 1 shows the format of an actual self-certifying path-
name. All remote files in SFS lie under the directory .

1SFS actually duplicates the input to SHA-1. Any collision of the dupli-
cate input SHA-1 is also a collision of SHA-1. Thus, duplicating SHA-1’s
input certainly does not harm security; it could conceivably help security in
the event that simple SHA-1 falls to cryptanalysis.
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Location HostID (specifies public key) path on remote server

Figure 1: A self-certifying pathname

Within that directory, SFS mounts remote file systems on
self-certifying pathnames of the form Location:HostID. SFS
encodes the 20-byte HostID in base 32, using 32 digits and
lower-case letters. (To avoid confusion, the encoding omits
the characters “l” [lower-case L], “1” [one], “0” and “o”.)

SFS clients need not know about file systems before users
access them. When a user references a non-existent self-
certifying pathname in , a client attempts to contact the
machine named by Location. If that machine exists, runs
SFS, and can prove possession of a private key correspond-
ing to HostID, then the client transparently creates the refer-
enced pathname and mounts the remote file system there.

Self-certifying pathnames combine with automatic
mounting to guarantee everyone the right to create file
systems. Given an Internet address or domain name to use
as a Location, anyone can generate a public key, determine
the corresponding HostID, run the SFS server software,
and immediately reference that server by its self-certifying
pathname on any client in the world.

Key management policy in SFS results from the names
of the files users decide to access. One user can retrieve a
self-certifying pathname with his password. Another can get
the same path from a certification authority. A third might
obtain the path from an untrusted source, but want cautiously
to peruse the file system anyway. SFS doesn’t care why users
believe this pathname, or even what level of confidence they
place in the files. SFS just delivers cryptographic file system
security to whatever file system the users actually name.

2.3 The directory

The SFS client breaks several important pieces of function-
ality out of the file system into unprivileged user agent pro-
cesses. Every user on an SFS client runs an unprivileged
agent program of his choice, which communicates with the
file system using RPC. The agent handles authentication of
the user to remote servers, prevents the user from accessing
revoked HostIDs, and controls the user’s view of the
directory. Users can replace their agents at will. To access
a server running a new user authentication protocol, for in-
stance, a user can simply run the new agent on an old client
with no special privileges.

The SFS client maps every file system operation to a par-
ticular agent based on the local credentials of the process

making the request.2 The client maintains a different
directory for each agent, and tracks which self-certifying
pathnames have been referenced in which directory.
In directory listings of , the client hides pathnames that
have never been accessed under a particular agent. Thus,
a naı̈ve user who searches for HostIDs with command-line
filename completion cannot be tricked by another user into
accessing the wrong HostID.

SFS agents have the ability to create symbolic links in
visible only to their own processes. These links can

map human-readable names to self-certifying pathnames.
When a user accesses a file not of the form Location:HostID
in , the client software notifies the appropriate agent of
the event. The agent can then create a symbolic link on-the-
fly so as to redirect the user’s access.

2.4 Server key management
Most users will never want to manipulate raw self-certifying
pathnames. Thus, one must ask if SFS actually solves any
problems for the average user, or if in practice it simply shifts
the problems to a different part of the system. We address the
question by describing numerous useful server key manage-
ment techniques built on SFS. In every case, ordinary users
need not concern themselves with raw HostIDs.

Manual key distribution. Manual key distribution is eas-
ily accomplished in SFS using symbolic links. If the admin-
istrators of a site want to install some server’s public key on
the local hard disk of every client, they can simply create
a symbolic link to the appropriate self-certifying pathname.
For example, given the server , client ma-
chines might all contain the link:

. Users
in that environment would simply refer to files as . . . .
The password file might list a user’s home directory as

.
Secure links. A symbolic link on one SFS file system can

point to the self-certifying pathname of another, forming a
secure link. In the previous example, the path

designates the file on
the server . That file, in turn, might be
a symbolic link pointing to the self-certifying pathname of

2Typically each user has one agent, and requests from all of the user’s
processes get mapped to that agent. Users can run multiple agents, however.
Additionally, an ssu utility allows a user to map operations performed in a
particular super-user shell to her own agent.
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server . Users following secure links
need not know anything about HostIDs.

Secure bookmarks. When run in an SFS file system,
the Unix pwd command returns the full self-certifying path-
name of the current working directory. From this path-
name, one can easily extract the Location and HostID of
the server one is currently accessing. We have a 10-line
shell script called bookmark that creates a link Location

Location:HostID in a user’s di-
rectory. With shells that support the cdpath variable, users
can add this directory to their cdpaths. By
simply typing “ Location”, they can subsequently return
securely to any file system they have bookmarked.

Certification authorities. SFS certification authorities
are nothing more than ordinary file systems serving symbolic
links. For example, if Verisign acted as an SFS certifica-
tion authority, client administrators would likely create sym-
bolic links from their local disks to Verisign’s file system:

. This file system would in turn
contain symbolic links to other SFS file systems, so that, for
instance, might point to

.
Unlike traditional certification authorities, SFS certifica-

tion authorities get queried interactively. This simplifies cer-
tificate revocation, but also places high integrity, availability,
and performance needs on the servers. To meet these needs,
we implemented a dialect of the SFS protocol that allows
servers to prove the contents of public, read-only file systems
using precomputed digital signatures. This dialect makes the
amount of cryptographic computation required from read-
only servers proportional to the file system’s size and rate
of change, rather than to the number of clients connecting. It
also frees read-only servers from the need to keep any on-line
copies of their private keys, which in turn allows read-only
file systems to be replicated on untrusted machines.

Password authentication. SFS lets people retrieve self-
certifying pathnames securely from remote servers using
their passwords. Unfortunately, users often choose poor
passwords. Thus, any password-based authentication of
servers must prevent attackers from learning information
they can use to mount an off-line password-guessing attack.3

Two programs, sfskey and authserv, use the SRP proto-
col [33] to let people securely download self-certifying path-
names using passwords. SRP permits a client and server
sharing a weak secret to negotiate a strong session key with-
out exposing the weak secret to off-line guessing attacks. To
use SRP, an SFS user first computes a one-way function of

3Of course, an attacker can always mount an on-line attack by connect-
ing to a server and attempting to “authenticate” a self-certifying pathname
with a guessed password. We make such on-line attacks very slow, however.
Moreover, an attacker who guesses 1,000 passwords will generate 1,000 log
messages on the server. Thus, on-line password guessing attempts can be
detected and stopped.

his password and stores it with the authserv daemon run-
ning on his file server. sfskey then uses the password as in-
put to SRP to establish a secure channel to the authserv. It
downloads the file server’s self-certifying pathname over this
channel, and has the user’s agent create a link to the path in
the directory.

In the particular user-authentication infrastructure we built
(see Section 2.5), each user has his own public keys with
which to authenticate himself. A users can additionally reg-
ister an encrypted copies of his private keys with authserv
and retrieve that copy along with the server’s self-certifying
pathname. The password that encrypts the private key is typ-
ically also the password used in SRP—a safe design because
the server never sees any password-equivalent data.

Suppose a user from MIT travels to a research labora-
tory and wishes to access files back at MIT. The user runs
the command “ ”. The
command prompts him for a single password. He types
it, and the command completes successfully. The user’s
agent then creates a symbolic link

. The user types “
”. Transparently, he is authenticated to
using a private key that sfskey just downloaded in en-

crypted form over an SRP-negotiated secure channel. The
user now has secure access to his files back at MIT. The
process involves no system administrators, no certification
authorities, and no need for this user to have to think about
anything like public keys or self-certifying pathnames.

Forwarding pointers. SFS never relies on long-lived en-
cryption keys for secrecy, only for authentication. In particu-
lar, an attacker who compromises a file server and obtains its
private key can begin impersonating the server, but he cannot
decrypt previously recorded network transmissions. Thus,
one need not change a file server’s public key preemptively
for fear of future disclosure.

Nevertheless, servers may need to change their self-
certifying pathnames (for instance if they change domain
names). To ease the transition if the key for the old path
still exists, SFS can serve two copies of the same file system
under different self-certifying pathnames. Alternatively, one
can replace the root directory of the old file system with a
single symbolic link or forwarding pointer to the new self-
certifying pathname.

Of course, if a self-certifying pathname change is precip-
itated by disclosure of the old private key, an attacker can
serve rogue data to users instead of the correct forwarding
pointer. As discussed in Section 2.6, a different mechanism
is needed to revoke the pathnames of compromised private
keys.

Certification paths. A user can give his agent a
list of directories containing symbolic links, for exam-
ple , , .
When the user accesses a non-self-certifying pathname in
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, the agent maps the name by looking in each directory
of the certification path in sequence. If it finds a symbolic
link of the same name as the file accessed, it redirects the
user to the destination of this symbolic link by creating a
symbolic link on-the-fly in .

Existing public key infrastructures. On-the-fly sym-
bolic link creation in can be used to exploit existing
public key infrastructures. For example, one might want
to use SSL [10] certificates to authenticate SFS servers, as
SSL’s certification model suits some purposes well. One
can in fact build an agent that generates self-certifying path-
names from SSL certificates. The agent might intercept ev-
ery request for a file name of the form

. It would contact ’s secure web server, down-
load and check the server’s certificate, and construct from
the certificate a self-certifying pathname to which to redirect
the user.

2.5 User authentication

While self-certifying pathnames solve the problem of au-
thenticating file servers to users, SFS must also authenticate
users to servers. As with server authentication, no single
means of user authentication best suits all needs. SFS there-
fore separates user authentication from the file system. Ex-
ternal software authenticates users through protocols of its
own choosing.

On the client side, agents handle user authentication.
When a user first accesses an SFS file system, the client
delays the access and notifies his agent of the event. The
agent can then authenticate the user to the remote server be-
fore the file access completes. On the server side, a separate
program, the authentication server or “authserver,” performs
user authentication. The file server and authserver commu-
nicate with RPC.

The agent and authserver pass messages to each other
through SFS using a (possibly multi-round) protocol opaque
to the file system software. If the authserver rejects an au-
thentication request, the agent can try again using different
credentials or a different protocol. Thus, one can add new
user authentication protocols to SFS without modifying the
actual file system software. Moreover, a single agent can
support several protocols by simply trying them each in suc-
cession to any given server.

If a user does not have an account on a file server, the
agent will after some number of failed attempts decline to
authenticate the user. At that point, the user will access the
file system with anonymous permissions. Depending on the
server’s configuration, this may permit access to certain parts
of the file system.

2.5.1 sfsagent and authserv

This section describes the user authentication system we de-
signed and built for SFS using the framework just described.
Our system consists of an agent program called sfsagent and
an authserver, authserv.

One of the great advantages of self-certifying pathnames
is the ease with which they let anyone establish a new file
server. If users had to think about authenticating them-
selves separately to every new file server, however, the bur-
den of user authentication would discourage the creation new
servers. Thus, our goal was to make user authentication as
transparent as possible to users of SFS.

All users have one or more public keys in our system.
sfsagent runs with the corresponding private keys. When a
client asks an agent to authenticate its user, the agent dig-
itally signs an authentication request. The request passes
through the client to server, which has authserv validate it.
authserv maintains a database mapping public keys to user
credentials. When it receives a valid request from the file
server, authserv replies with a set of Unix credentials—a user
ID and list of group IDs.
sfsagent currently just keeps a user’s private key in mem-

ory. However, we envisage a variety of more sophisticated
agents. The agent need not have direct knowledge of any
private keys. To protect private keys from compromise, for
instance, one could split them between an agent and a trusted
authserver using proactive security. An attacker would need
to compromise both the agent and authserver to steal a split
secret key. Alternatively, the agent might simply communi-
cate through a serial port with a PDA that knows the key.

Proxy agents could forward authentication requests to
other SFS agents. We hope to build a remote login utility
similar to ssh [34] that acts as a proxy SFS agent. That way,
users can automatically access their files when logging in to
a remote machine. Authentication requests contain the self-
certifying pathname of the server accessed by the user. They
also contain a field reserved for the path of processes and ma-
chines through which the request arrive at the agent. Thus,
an SFS agent can keep a full audit trail of every private key
operation it performs.

2.5.2 User key management

authserv translates authentication requests into credentials.
It does so by consulting one or more databases mapping pub-
lic keys to users. Because SFS is a secure file system, some
databases can reside on remote file servers and be accessed
through SFS itself. Thus, for example, a server can import a
centrally-maintained list of users over SFS while also keep-
ing a few guest accounts in a local database. authserv auto-
matically keeps local copies of remote databases; it can con-
tinue to function normally when it temporarily cannot reach
the servers for those databases.
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Each of authserv’s public key databases is configured as
either read-only or writable. authserv handles a number of
management tasks for users in writable databases. It allows
them to connect over the network with sfskey and change
their public keys, for example. It also lets them register SRP
data and encrypted copies of their private keys for password
authentication, as described in Section 2.4. To ease the adop-
tion of SFS, authserv can optionally let users who actually
log in to a file server register initial public keys by typing
their Unix passwords.

A server can mount a password guessing attack against
a user if it knows her SRP data or encrypted private key.
SFS makes such guessing attacks expensive, however, by
transforming passwords with the eksblowfish algorithm [19].
Eksblowfish takes a cost parameter that one can increase
as computers get faster. Thus, even as hardware improves,
guessing attacks should continue to take almost a full sec-
ond of CPU time per account and candidate password tried.
Of course, the client-side sfskey program must invest corre-
spondingly much computation each time it invokes SRP or
decrypts a user’s private key.

Very few servers actually need access to a user’s encrypted
private key or SRP data, however. authserv maintains two
versions of every writable database, a public one and a pri-
vate one. The public database contains public keys and cre-
dentials, but no information with which an attacker could
verify a guessed password. A server can safely export a
public database to the world on an SFS file system. Other
authservs can make read-only use of it. Thus, for instance,
a central server can easily maintain the keys of all users in
a department and export its public database to separately-
administered file servers without trusting them.

2.6 Revocation
When a server’s private key is compromised, its old self-
certifying pathname may lead users to a fake server run by
a malicious attacker. SFS therefore provides two mecha-
nisms to prevent users from accessing bad self-certifying
pathnames: key revocation and HostID blocking. Key revo-
cation happens only by permission of a file server’s owner. It
automatically applies to as many users as possible. HostID
blocking, on the other hand, originates from a source other
than a file system’s owner, and can conceivably happen
against the owner’s will. Individual users’ agents must de-
cide whether or not to honor blocked HostIDs.

In keeping with its general philosophy, SFS separates key
revocation from key distribution. Thus, a single revocation
mechanism can revoke aHostID that has been distributed nu-
merous different ways. SFS defines a message format called
a key revocation certificate, constructed as follows:

“PathRevoke” Location NULL

Revocation certificates are self-authenticating. They con-

tain a public key, , and must be signed by the correspond-
ing private key, . “PathRevoke” is a constant. Location
corresponds to the Location in the revoked self-certifying
pathname. NULL simply distinguishes revocation certifi-
cates from similarly formated forwarding pointers. A revo-
cation certificate always overrules a forwarding pointer for
the same HostID.

When the SFS client software sees a revocation certifi-
cate, it blocks further access by any user to the HostID de-
termined by the certificate’s Location and . Clients obtain
revocation certificates in two ways: from servers and from
agents. When SFS first connects to a server, it announces
the Location and HostID of the file system it wishes to ac-
cess. The server can respond with a revocation certificate.
This is not a reliable means of distributing revocation certifi-
cates, but it may help get the word out fast about a revoked
pathname. Alternatively, when a user first accesses a self-
certifying pathname, the client asks his agent to check if the
path has been revoked. At that point the agent can respond
with a revocation certificate.

Revocation certificates might be used as follows.
Verisign decides to maintain a directory called

. In that directory reside files named by
HostID, where each file contains a revocation certificate for
the corresponding HostID. Whenever a user accesses a new
file system, his agent checks the revocation directory to look
for a revocation certificate. If one exists, the agent returns it
to the client software.

Because revocation certificates are self-authenticating,
certification authorities need not check the identity of people
submitting them. Thus, even someone without permission to
obtain ordinary public key certificates from Verisign could
still submit revocation certificates.

Of course, people who dislike Verisign are free to
look elsewhere for revocation certificates. Given the self-
authenticating nature of revocation certificates, however, an
“all of the above” approach to retrieving them can work
well—even users who distrust Verisign and would not sub-
mit a revocation certificate to them can still check Verisign
for other people’s revocations.

Sometimes an agent may decide a pathname has gone bad
even without finding a signed revocation certificate. For ex-
ample, even if a file system’s owner has not revoked the file
system’s key, an agent may find that a certification authority
in some external public key infrastructure has revoked a rel-
evant certificate. To accommodate such situations, the agent
can request HostID blocking from the client. This prevents
the agent’s owner from accessing the self-certifying path-
name in question, but does not affect any other users.

Both revoked and blocked self-certifying pathnames be-
come symbolic links to the non-existent file .
Thus, while accessing a revoked path results in a file not
found error, users who investigate further can easily notice
that the pathname has actually been revoked.
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Figure 2: The SFS system components

3 Implementation

Figure 2 shows the programs that comprise the SFS system.
At the most basic level, SFS consists of clients and servers
joined by TCP connections.

For portability, the SFS client software behaves like an
NFS version 3 [6] server. This lets it communicate with
the operating system through ordinary networking system
calls. When users accesses files under SFS, the kernel sends
NFS RPCs to the client software. The client manipulates the
RPCs and forwards them over a secure channel to the appro-
priate SFS server. The server modifies requests slightly and
tags them with appropriate credentials. Finally, the server
acts as an NFS client, passing the request to an NFS server
on the same machine. The response follows the same path in
reverse.

3.1 Cryptographic protocols

This section describes the protocols by which SFS clients set
up secure chennels to servers and users authenticate them-
selves to servers. We use quoted values to represent con-
stants. , , and designate public keys (belonging
to a client, server, and user, respectively). designates
the private key corresponding to public key . Subscript
represents a message encrypted with key , while subscript

signifies a message signed by .

3.1.1 Key negotiation

When the SFS client software sees a particular self-certifying
pathname for the first time, it must establish a secure chan-
nel to the appropriate server. The client starts by connecting
(insecurely) to the machine named by the Location in the
pathname. It requests the server’s public key, (Figure 3,
step 2), and checks that the key in fact matches the path-
name’s HostID. If the key matches the pathname, the client
knows it has obtained the correct public key.

Once the client knows the server’s key, it negotiates shared
session keys using a protocol similar to Taos [32]. To ensure
forward secrecy, the client employs a short-lived public key,

(Figure 3, step 3), which it sends to the server over the
insecure network. The client then picks two random key-
halves, and ; similarly, the server picks random key-
halves and . The two encrypt and exchange their
key-halves as shown in Figure 3.

3

1

4
Client
SFS

Server
SFS2

Figure 3: The SFS key negotiation protocol

The client and server simultaneously decrypt each other’s
key halves, overlapping computation to minimize latency.
Finally, they compute two shared session keys—one for each
direction—as follows:

“KCS”
“KSC”

The client and server use these session keys to encrypt and
guarantee the integrity of all subsequent communication in
the session.

This key negotiation protocol assures the client that no one
else can know and without also possessing .
Thus, it gives the client a secure channel to the desired server.
The server, in contrast, knows nothing about the client. SFS
servers do not care which clients they talk to, only which
users are on those clients. In particular, the client’s tempo-
rary key, , is anonymous and has no bearing on access
control or user authentication. Clients discard and regener-
ate at regular intervals (every hour by default).
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3.1.2 User authentication
The current SFS agent and authserver rely on public keys for
user authentication. Every user has a public key and gives
his agent access to that key. Every authserver has a mapping
from public keys to credentials. When a user accesses a new
file system, the client software constructs an authentication
request for the agent to sign. The client passes the signed
request to the server, which asks the authserver to validate it.

SFS defines an AuthInfo structure to identify sessions
uniquely:

SessionID “SessionInfo”
AuthInfo “AuthInfo” “FS” Location

HostID SessionID

The client software also keeps a counter for each session to
assign a unique sequence number to every authentication re-
quest.

When a user accesses a file system for the first time, the
client initiates the user-authentication process by sending an
AuthInfo structure and sequence number to the user’s agent
(see Figure 4). The agent returns an AuthMsg by hashing the
AuthInfo structure to a 20-byte AuthID, concatenating the se-
quence number, signing the result, and appending the user’s
public key:

AuthID AuthInfo
SignedAuthReq “SignedAuthReq” AuthID SeqNo

AuthMsg SignedAuthReq

The client treats this authentication message as opaque
data. It adds another copy of the sequence number and sends
the data to the file server, which in turn forwards it to the
authserver. The authserver verifies the signature on the re-
quest and checks that the signed sequence number matches
the one chosen by the client. If the request is valid, the auth-
server maps the agent’s public key to a set of local creden-
tials. It returns the credentials to the server along with the
AuthID and sequence number of the signed message.

The server checks that the AuthID matches the session
and that the sequence number has not appeared before in
the same session.4 If everything succeeds, the server assigns
an authentication number to the credentials, and returns the
number to the client. The client tags all subsequent file sys-
tem requests from the user with that authentication number.
If, on the other hand, authentication fails and the agent opts
not to try again, the client tags all file system requests from
the user with authentication number zero, reserved by SFS
for anonymous access.

Sequence numbers are not required for the security of user
authentication. As the entire user authentication protocol

4The server accepts out-of-order sequence numbers within a reasonable
window to accommodate the possibility of multiple agents on the client re-
turning out of order.
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Figure 4: The SFS user authentication protocol

happens over a secure channel, all authentication messages
received by the server must have been freshly generated by
the client. Sequence numbers prevent one agent from us-
ing the signed authentication request of another agent on the
same client. This frees the file system software from the need
to keep signed authentication requests secret—a prudent de-
sign choice given how many layers of software the requests
must travel through.

3.1.3 Cryptography

SFS makes three computational hardness assumptions. It as-
sumes the ARC4 [13] stream cipher (allegedly the same as
Rivest’s unpublished RC4) is a pseudo-random generator. It
assumes factoring is hard. Finally, it assumes that SHA-1
behaves like a random oracle [1].

SFS uses a pseudo random generator in its algorithms and
protocols. We chose DSS’s pseudo-random generator [9],
both because it is based on SHA-1 and because it cannot
be run backwards in the event that its state gets compro-
mised. To seed the generator, SFS asynchronously reads data
from various external programs (e.g., , ), from

(if available), from a file saved
by the previous execution, and from a nanosecond (when
possible) timer to capture the entropy of process schedul-
ing. Programs that require users to enter a passphrase add
both the keys typed and inter-keystroke timers as an addi-
tional source of randomness. All of the above sources are
run through a SHA-1-based hash function [1] to produce a
512-bit seed. Because the external programs run in paral-
lel and SFS reads from them asynchronously, SFS can effi-
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ciently seed the generator from all sources every time a pro-
gram starts execution.

SFS uses the Rabin public key cryptosystem [31] for
encryption and signing. The implementation is secure
against adaptive chosen-ciphertext [2] and adaptive chosen-
message [3] attacks. (Encryption is actually plaintext-aware,
an even stronger property.) Rabin assumes only that factor-
ing is hard, making SFS’s implementation no less secure in
the random oracle model than cryptosystems based on the
better-known RSA problem. Like low-exponent RSA, en-
cryption and signature verification are particularly fast in Ra-
bin because they do not require modular exponentiation.

SFS uses a SHA-1-based message authentication code
(MAC) to guarante the integrity of all file system traffic be-
tween clients and read-write servers, and encrypts this trafic
with ARC4. Both the encryption and MAC have slightly
non-standard implementations. The ARC4 implementation
uses 20-byte keys by spinning the ARC4 key schedule once
for each 128 bits of key data. SFS keeps the ARC4 stream
running for the duration of a session. It re-keys the SHA-1-
based MAC for each message using 32 bytes of data pulled
from the ARC4 stream (and not used for the purposes of en-
cryption). The MAC is computed on the length and plaintext
contents of each RPC message. The length, message, and
MAC all get encrypted.

SFS’s stream cipher is identical to ARC4 after the
key schedule, and consequently has identical performance.
SFS’s MAC is slower than alternatives such as MD5 HMAC.
Both are artifacts of the implementation and could be
swapped out for more popular algorithms without affecting
the main claims of the paper.

3.2 Modularity and extensibility
Figure 2 reveals that a number of programs comprise the
SFS system. All programs communicate with Sun RPC [27].
Thus, the exact bytes exchanged between programs are
clearly and unambiguously described in the XDR protocol
description language [28]. We also use XDR to define SFS’s
cryptographic protocols. Any data that SFS hashes, signs,
or public-key encrypts is defined as an XDR data structure;
SFS computes the hash or public key function on the raw,
marshaled bytes. We use our own RPC compiler, specialized
for C++, along with a new, asynchronous RPC library.

Breaking SFS into several programs helps the reliability,
security, and extensibility of the implementation. Our RPC
library can pretty-print RPC traffic for debugging, making it
easy to understand any problems by tracing exactly how pro-
cesses interact. We use SFS for our day-to-day computing,
but have never run across a bug in the system that took more
than a day to track down.

Within a machine, the various SFS processes communi-
cate over UNIX-domain sockets. To authenticate processes
to each other, SFS relies on two special properties of UNIX-

domain sockets. First, one can control who connects to
them by setting access permissions on directories. Second,
one can pass file descriptors between processes over Unix-
domain sockets. Several SFS daemons listen for connections
on sockets in a protected directory, . A
100-line setgid program, suidconnect, connects to a socket
in this directory, identifies the current user to the listening
daemon, and passes the connected file descriptor back to the
invoking process before exiting. The agent program con-
nects to the client master through this mechanism, and thus
needs no special privileges; users can replace it at will.

SFS’s modularity facilitates the development of new file
system protocols. On the client side, a client master pro-
cess, sfscd, communicates with agents, handles revocation
and forwarding pointers, and acts as an “automounter” for
remote file systems. It never actually handles requests for
files on remote servers, however. Instead, it connects to a
server, verifies the public key, and passes the connected file
descriptor to a subordinate daemon selected by the type and
version of the server. On the server side, a server master,
sfssd, accepts all incoming connections from clients. sfssd
passes each new connections to a subordinate server based
on the version of the client, the service it requests (currently
fileserver or authserver), the self-certifying pathname it re-
quests, and a currently unused “extensions” string.

A configuration file controls how client and server mas-
ters hand off connections. Thus, one can add new file sys-
tem protocols to SFS without changing any of the existing
software. Old and new versions of the same protocols can
run alongside each other, even when the corresponding sub-
sidiary daemons have no special support for backwards com-
patibility. As an example of SFS’s protocol extensibility, we
implemented a protocol for public, read-only file systems
that proves the contents of file systems with digital signa-
tures. As described in Section 2.4, read-only servers work
well as SFS certification authorities. Implementing the read-
only client and server required no changes to existing SFS
code; only configuration files had to be changed.

3.3 NFS details
The SFS implementation was built with portability as a goal.
Currently, the system runs on OpenBSD, FreeBSD, Solaris,
Linux (with an NFS 3 kernel patch), and Digital Unix. Using
NFS both to interface with the operating system on the client
and to access files on the server makes portability to systems
with NFS 3 support relatively painless.

The SFS read-write protocol, while virtually identical to
NFS 3, adds enhanced attribute and access caching to reduce
the number of NFS and RPCs sent over
the wire. We changed the NFS protocol in two ways to ex-
tend the lifetime of cache entries. First, every file attribute
structure returned by the server has a timeout field or lease.
Second, the server can call back to the client to invalidate
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entries before the lease expires. The server does not wait
for invalidations to be acknowledged; consistency does not
need to be perfect, just better than NFS 3 on which SFS is
implemented.

The NFS protocol uses numeric user and group IDs to
specify the owner and group of a file. These numbers have no
meaning outside of the local administrative realm. A small C
library, libsfs, allows programs to query file servers (through
the client) for mappings of numeric IDs to and from human-
readable names. We adopt the convention that user and group
names prefixed with “ ” are relative to the remote file server.
When both the ID and name of a user or group are the same
on the client and server (e.g., SFS running on a LAN), libsfs
detects this situation and omits the percent sign.

Using NFS has security implications. The SFS read-write
server requires an NFS server. Running an NFS server can
in itself create a security hole. NFS identifies files by server-
chosen, opaque file handles (typically 32-bytes long). These
file handles must remain secret; an attacker who learns the
file handle of even a single directory can access any part of
the file system as any user. SFS servers, in contrast, make
their file handles publicly available to anonymous clients.
SFS therefore generates its file handles by adding redun-
dancy to NFS handles and encrypting them in CBC mode
with a 20-byte Blowfish [26] key. Unfortunately, some op-
erating systems use such poor random number generators
that NFS file handles can potentially be guessed outright,
whether or not one runs SFS.

One can avoid NFS’s inherent vulnerabilities with packet
filtering software. Several good, free packet filters exist
and, between them, support most common operating sys-
tems. Sites with firewalls can also let SFS through the fire-
wall without fearing such problems, so long as the firewall
blocks NFS and portmap (which relays RPC calls) traffic.
Many versions of Unix have a program called fsirand that
randomizes NFS file handles. fsirand may do a better job of
choosing file handles than a factory install of the operating
system.

Another serious issue is that SFS effectively relays NFS 3
calls and replies to the kernel. During the course of de-
veloping SFS, we found and fixed a number of client and
server NFS bugs in Linux, OpenBSD, and FreeBSD. In
many cases, perfectly valid NFS messages caused the kernel
to overrun buffers or use uninitialized memory. An attacker
could exploit such weaknesses through SFS to crash or break
into a machine running SFS. We think the low quality of
most NFS implementations constitutes the biggest security
threat to SFS.

The SFS client creates a separate mount point for each re-
mote file system. This lets different subordinate daemons
serve different file systems, with each subordinate daemon
exchanging NFS traffic directly with the kernel. Using mul-
tiple mount points also prevents one slow server from af-
fecting the performance of other servers. It ensures that the

device and inode number fields in a file’s attribute structure
uniquely identify the file, as many file utilities expect. Fi-
nally, by assigning each file system its own device number,
this scheme prevents a malicious server from tricking the
pwd command into printing an incorrect path.

All NFS mounting in the client is performed by a separate
NFS mounter program called nfsmounter. The NFS mounter
is the only part of the client software to run as root. It con-
siders the rest of the system untrusted software. If the other
client processes ever crash, the NFS mounter takes over their
sockets, acts like an NFS server, and serves enough of the
defunct file systems to unmount them all. The NFS mounter
makes it difficult to lock up an SFS client—even when de-
veloping buggy daemons for new dialects of the protocol.

4 Performance
In designing SFS we ranked security, extensibility, and
portability over performance. Our performance goal was
modest: to make application performance on SFS compa-
rable to that on NFS, a widely used network file system.
This section presents results that show that SFS does slightly
worse than NFS 3 over UDP and better than NFS 3 over TCP.

4.1 Experimental setup
We measured file system performance between two
550 MHz Pentium IIIs running FreeBSD 3.3. The client and
server were connected by 100 Mbit/sec switched Ethernet.
Each machine had a 100 Mbit SMC EtherPower Ethernet
card, 256 Mbytes of memory, and an IBM 18ES 9 Gigabyte
SCSI disk. We report the average of multiple runs of each
experiment.

To evaluate SFS’s performance, we ran experiments on
the local file system, NFS 3 over UDP, and NFS 3 over
TCP. SFS clients and servers communicate with TCP, mak-
ing NFS 3 over TCP the ideal comparison to isolate SFS’s
inherent performance characteristics. However, we believe
FreeBSD’s TCP implementation of NFS may be suboptimal
(in part because we experienced a kernel panic while writing
a large file). We therefore mostly consider the comparison
between SFS and NFS 3 over UDP. SFS uses UDP for NFS
traffic to the local operating system and so is unaffected by
bugs in FreeBSD’s TCP NFS.

4.2 SFS base performance
Three principal factors make SFS’s performance different
from NFS’s. First, SFS has a user-level implementation
while NFS runs in the kernel. This hurts both file system
throughput and the latency of file system operations. Sec-
ond, SFS encrypts and MACs network traffic, reducing file
system throughput. Finally, SFS has better attribute and ac-
cess caching than NFS, which reduces the number of RPC
calls that actually need to go over the network.

134



Latency Throughput
File System ( sec) (Mbyte/sec)
NFS 3 (UDP) 200 9.3
NFS 3 (TCP) 220 7.6
SFS 790 4.1
SFS w/o encryption 770 7.1

Figure 5: Micro-benchmarks for basic operations.

To characterize the impact of a user-level implementation
and encryption on latency, we measured the cost of a file sys-
tem operation that always requires a remote RPC but never
requires a disk access—an unauthorized fchown system call.
The results are shown in the Latency column of Figure 5.
SFS is 4 times slower than both TCP and UDP NFS. Only
20 sec of the 590 sec difference can be attributed to soft-
ware encryption; the rest is the cost of SFS’s user-level im-
plementation.

To determine the cost of software encryption, we mea-
sured the speed of streaming data from the server without
going to disk. We sequentially read a sparse, 1,000 Mbyte
file. The results are shown in the Throughput column of Fig-
ure 5. SFS pays 3 Mbyte/sec for its user-level implementa-
tion and a further 2.2 Mbyte/sec for encryption.

Although SFS pays a substantial cost for its user-level im-
plementation and software encryption in these benchmarks,
several factors mitigate the effects on application workloads.
First, multiple outstanding request can overlap the latency of
NFS RPCs. Second, few applications ever read or write data
at rates approaching SFS’s maximum throughput. Disk seeks
push throughput below 1 Mbyte/sec on anything but sequen-
tial accesses. Thus, the real effect of SFS’s encryption on
performance is to increase CPU utilization rather than cap
file system throughput. Finally SFS’s enhanced caching im-
proves performance by reducing the number of RPCs than
need to travel over the network.

4.3 End-to-end performance
We evaluate SFS’s application performance with the Mod-
ified Andrew Benchmark (MAB) [18]. The first phase of
MAB creates a few directories. The second stresses data
movement and metadata updates as a number of small files
are copied. The third phase collects the file attributes for a
large set of files. The fourth phase searches the files for a
string which does not appear, and the final phase runs a com-
pile. Although MAB is a light workload for today’s file sys-
tems, it is still relevant, as we are more interested in protocol
performance than disk performance.

Figure 6 shows the execution time of each MAB phase
and the total. As expected, the local file system outperforms
network file systems on most phases; the local file system
performs no network communication and does not flush data
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Figure 6: Wall clock execution time (in seconds) for the dif-
ferent phases of the modified Andrew benchmark, run on dif-
ferent file systems. Local is FreeBSD’s local FFS file system
on the server.

System Time (seconds)
Local 140
NFS 3 (UDP) 178
NFS 3 (TCP) 207
SFS 197

Figure 7: Compiling the GENERIC FreeBSD 3.3 kernel.

to disk on file closes. The local file system is slightly slower
on the compile phase because the client and server have a
larger combined cache than the server alone.

Considering the total time for the networked file systems,
SFS is only 11% (0.6 seconds) slower than NFS 3 over UDP.
SFS performs reasonably because of its more aggressive at-
tribute and access caching. Without enhanced caching, MAB
takes a total of 6.6 seconds, 0.7 seconds slower than with
caching and 1.3 seconds slower than NFS 3 over UDP.

We attribute most of SFS’s slowdown on MAB to its user-
level implementation. We disabled encryption in SFS and
observed only an 0.2 second performance improvement.

To evaluate how SFS performs on a larger application
benchmark, we compiled the GENERIC FreeBSD 3.3 ker-
nel. The results are shown in Figure 7. SFS performs 16%
worse (29 seconds) than NFS 3 over UDP and 5% better (10
seconds) than NFS 3 over TCP. Disabling software encryp-
tion in SFS sped up the compile by only 3 seconds or 1.5%.

4.4 Sprite LFS microbenchmarks
The small file test of the Sprite LFS microbenchmarks [22]
creates, reads, and unlinks 1,000 1 Kbyte files. The large
file test writes a large (40,000 Kbyte) file sequentially, reads
from it sequentially, then writes it randomly, reads it ran-
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Figure 8: Wall clock execution time for the different phases
of the Sprite LFS small file benchmark, run over different file
systems. The benchmark creates, reads, and unlinks 1,000
1 Kbyte files. Local is FreeBSD’s local FFS file system on the
server.

domly, and finally reads it sequentially. Data is flushed to
disk at the end of each write phase.

The small file benchmark operates on small files, does not
achieve high disk throughput on FreeBSD’s FFS file system,
and therefore mostly stresses SFS’s latency. On the create
phase, SFS performs about the same as NFS 3 over UDP (see
Figure 8). SFS’s attribute caching makes up for its greater la-
tency in this phase; without attribute caching SFS performs
1 second worse than NFS 3. On the read phase, SFS is 3
times slower than NFS 3 over UDP. Here SFS suffers from
its increased latency. The unlink phase is almost completely
dominated by synchronous writes to the disk. The RPC over-
head is small compared to disk accesses and therefore all file
systems have roughly the same performance.

The large file benchmark stresses throughput and shows
the impact of both SFS’s user-level implementation and soft-
ware encryption. On the sequential write phase, SFS is
4.4 seconds (44%) slower than NFS 3 over UDP. On the
sequential read phase, it is 5.1 seconds (145%) slower. With-
out encryption, SFS is only 1.7 seconds slower (17%) on se-
quential writes and 1.1 seconds slower (31%) on sequential
reads.

4.5 Summary
The experiments demonstrate that SFS’s user-level imple-
mentation and software encryption carry a performance
price. Nonetheless, SFS can achieve acceptable perfor-
mance on application workloads, in part because of its better
caching than NFS 3. We expect SFS’s performance penalty
to decline as hardware improves. The relative performance
difference of SFS and NFS 3 on MAB shrunk by a factor
of two when we moved from 200 MHz Pentium Pros to
550 MHz Pentium IIIs. We expect this trend to continue.
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Figure 9: Wall clock execution time for the different phases
of the Sprite LFS large file benchmarks, run over different file
systems. The benchmark creates a 40,000 Kbyte file and
reads and writes 8 Kbyte chunks. Local is FreeBSD’s local
FFS file system on the server.

5 Related work
SFS is the first file system to separate key management from
file system security. No other file system has self-certifying
pathnames or lets the file namespace double as a key certifi-
cation namespace. SFS is also the first file system to support
both password authentication of servers and certification au-
thorities. In this section, we relate SFS to other file systems
and other secure network software.

5.1 File systems
AFS [12, 24, 25] is probably the most successful wide-area
file system to date. We discuss AFS in detail, followed by a
brief summary of other file systems.

AFS. Like SFS, AFS mounts all remote file systems
under a single directory, . AFS does not provide a
single global file system image, however; client machines
have a fixed list of available servers (called CellServDB)
that only a privileged administrator can update. AFS uses
Kerberos [29] shared secrets to protect network traffic, and
thus cannot guarantee the integrity of data from file systems
on which users do not have accounts. Though AFS can be
compiled to encrypt network communications to servers on
which users have accounts, the commercial binary distribu-
tions in widespread use do not offer any secrecy. DFS [14]
is a second generation file system, based on AFS, in which
a centrally maintained database determines all available file
systems.

To make the benefits of self-certifying pathnames more
concrete, consider the following security conundrum posed
by AFS. AFS uses password authentication to guarantee the
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integrity of remote files.5 When a user logs into an AFS
client machine, she uses her password and the Kerberos pro-
tocol to obtain a session key shared by the file server. She
then gives this key to the AFS client software. When the user
subsequently accesses AFS files, the client uses the shared
key both to authenticate outgoing requests to the file server
and to verify the authenticity of replies.

Because the AFS user knows her session key (a necessary
consequence of obtaining it with her password), she knows
everything she needs to forge arbitrary replies from the file
server. In particular, if the user is malicious, she can pollute
the client’s disk cache, buffer cache, and name cache with
rogue data for parts of the file system she should not have
permission to modify.

When two or more users log into the same AFS client, this
poses a security problem. Either the users must all trust each
other, or they must trust the network, or the operating system
must maintain separate file system caches for all users—an
expensive requirement that, to the best of our knowledge,
no one has actually implemented. In fairness to AFS, its
creators designed the system for use on single-user worksta-
tions. Nonetheless, in practice people often set up multi-user
AFS clients as dial-in servers, exposing themselves to this
vulnerability.

Self-certifying pathnames prevent the same problem from
occurring in SFS. Two users can both retrieve a self-
certifying pathname using their passwords. If they end up
with the same path, they can safely share the cache; they
are asking for a server with the same public key. Since nei-
ther user knows the corresponding private key, neither can
forge messages from the server. If, on the other hand, the
users disagree over the file server’s public key (for instance
because one user wants to cause trouble), the two will also
disagree on the HostID. They will end up accessing different
files with different names, which the file system will conse-
quently cache separately.

Other file systems. The Echo distributed file system
[4, 5, 16, 17] uses Taos’s authentication infrastructure to
achieve secure global file access without global trust of the
authentication root. Clients need not go through the authen-
tication root to access volumes with a common ancestor in
the namespace hierarchy. However, the trust hierarchy has a
central root implemented with DNS (and presumably requir-
ing the cooperation of root name servers). Echo can short-
circuit the trust hierarchy with a mechanism called “secure
cross-links.” It also has consistent and inconsistent versions
of the file system protocol, much as SFS uses both read-write
and read-only file protocols.

The Truffles service [20] is an extension of the Ficus file
system [11] to operate securely across the Internet. Truf-
fles provides fine-grained access control with the interesting

5Actually, AFS uses an insecure message authentication algorithm—an
encrypted CRC checksum with a known polynomial. This problem is not
fundamental, however.

property that a user can export files to any other user in the
world, without the need to involve administrators. Unfortu-
nately, the interface for such file sharing is somewhat clunky,
involving the exchange of E-mail messages signed and en-
crypted with PEM. Truffles also relies on centralized, hi-
erarchical certification authorities, naming users with X.500
distinguished names and requiring X.509 certificates for ev-
ery user and every server.

WebFS [30] implements a network file system on top of
the HTTP protocol. Specifically, WebFS uses the HTTP
protocol to transfer data between user-level HTTP servers
and an in-kernel client file system implementation. WebFS
therefore allows the contents of existing URLs to be accessed
through the file system. It also attempts to provide authen-
tication and security through a protocol layered over HTTP;
authentication requires a hierarchy of certification authori-
ties.

5.2 Internet network security
SSL. SSL [10] is the most-widely deployed protocol for
secure communication between web browsers and servers.
Server authentication is based on SSL certificates—digitally
signed statements that a particular public key belongs to a
particular Internet domain name. To run a secure web server,
a site must purchase a certificate from a widely trusted cer-
tification authority—for example, Verisign. When a browser
connects to the server, the server sends back this certificate.
The browser knows Verisign’s public key and uses it to vali-
date the certificate. If the certificate checks out, the browser
knows it has the web server’s real public key. It uses this key
to set up a secure channel.

One can imagine a distributed file system consisting of a
modified version of SFS or NFS 3 running over SSL. We
rejected this design because SSL’s approach to key manage-
ment is inappropriate for most file servers. Unclassified mil-
itary networks, for instance, should not trust civilian certifi-
cation authorities. Students setting up file servers should not
need the cooperation of university officials with the author-
ity to apply for certificates. Setting up a secure file server
should be as simple and decentralized a process as setting up
an ordinary, insecure web server.

We decided to purchase a certificate from Verisign to set
up a secure web server. We were willing to pay Verisign’s
$350 fee to conduct the experiment. To avoid involving uni-
versity administrators, we decided not to apply for a certifi-
cate in the domain. Instead, we purchased a do-
main of our own. This domain did not belong to a corpo-
ration, so Verisign required us to apply for a DBA (“Doing
Business As”) license at City Hall. To get a DBA we had to
pay $20 and show a driver’s license, but City Hall neither
verified our business’s address nor performed any on-line
checks to see if the name was already in use. Our business
was not listed in the telephone directory, so Verisign could
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not call to perform an employment check on the person re-
questing the certificate. Instead this person had to fax them
a notarized statement testifying that he was involved in the
business. One week and $440 later, we received a Verisign
certificate for a single server.

While Verisign’s certification procedure may seem cum-
bersome, the security of a certificate is only as good as the
checks performed by the issuing authority. When a client
trusts multiple certification authorities, SSL provides only as
much security as the weakest one. Thus, SSL forces a trade-
off between security and ease of setting up servers. SFS im-
poses no such trade-off; it lets high- and low-grade certifi-
cation schemes exist side-by-side. A user can access sen-
sitive servers through without losing the ability
to browse sites under . More importantly,
however, when users have passwords on servers, SRP gives
them secure access without ever involving a certification au-
thority.

Of course, as described in Section 2.4, SFS agents could
actually exploit the existing SSL public key infrastructure to
authenticate SFS servers.

IPsec. IPsec [15] is a standard for encrypting and authen-
ticating Internet network traffic between hosts or gateways.
IPsec specifies packet formats for encrypted data, but leaves
the particulars of key management open-ended. Unfortu-
nately, no global key management proposal has yet reached
even the level of deployment of SSL certificates. Moreover,
IPsec is geared towards security between machines or net-
works, and ill-suited to applications like SFS in which un-
trusted users participate in key management and sign mes-
sages cryptographically bound to session keys.

SPKI/SDSI. SPKI/SDSI [7, 21] is a key distribution sys-
tem that is similar in spirit to SFS’s egalitarian namespace
and that could be implemented on top of SFS. In SPKI/SDSI,
principals are public keys, and every principal acts as a cer-
tification authority for its own namespace. SFS effectively
treats file systems as public keys; however, because file sys-
tems inherently represent a namespace, SFS has no need for
special certification machinery—symbolic links do the job.
SDSI specifies a few special roots, such as ,
which designate the same public key in every namespace.
SFS can achieve a similar result by convention if clients all
install symbolic links to certification authorities in their local
root directories.

6 Summary
SFS requires no information other than a self-certifying path-
name to connect securely to a remote file server. As a result,
SFS provides a secure, global file system without mandating
any particular key-management policy. Other secure file sys-
tems all rely on specific policies to assign file names to en-
cryption keys. SFS, in contrast, lets users perform key man-
agement by generating file names. In this paper we described

many useful key management techniques for SFS that could
not have coexisted inside a file system.

Because it has a secure, global namespace, SFS itself con-
stitutes a very effective key management infrastructure. Pub-
lic keys name files as part of self-certifying pathnames, and
files name public keys with symbolic links. Each step of
the file name resolution process can invoke a different key
management mechanism. The ability to combine multiple
mechanisms results in functionality that no one of them can
provide alone.

We think that cumbersome security procedures have pre-
vented previous secure file systems from gaining widespread
use. We hope SFS will let many people enjoy secure file
sharing without an unnecessary administrative burden. To
facilitate its deployment, we have made SFS free software.
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