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Abstract

This paper presents the design and implementation of the
Intentional Naming System (INS), a resource discovery and
service location system for dynamic and mobile networks of
devices and computers. Such environments require a nam-
ing system that is (i) expressive, to describe and make re-
quests based on specific properties of services, (ii) respon-
sive, to track changes due to mobility and performance, (iii)
robust, to handle failures, and (iv) easily configurable. INS
uses a simple language based on attributes and values for its
names. Applications use the language to describe what they
are looking for (i.e., theirintent), not where to find things
(i.e., not hostnames). INS implements alate bindingmech-
anism that integrates name resolution and message routing,
enabling clients to continue communicating with end-nodes
even if the name-to-address mappings change while a ses-
sion is in progress. INS resolvers self-configure to form an
application-level overlay network, which they use to discover
new services, perform late binding, and maintain weak con-
sistency of names using soft-state name exchanges and up-
dates. We analyze the performance of the INS algorithms
and protocols, present measurements of a Java-based imple-
mentation, and describe three applications we have imple-
mented that demonstrate the feasibility and utility of INS.

1 Introduction

Network environments of the future will be characterized
by a variety of mobile and wireless devices in addition to
general-purpose computers. Such environments display a
degree of dynamism not usually seen in traditional wired
networks due to mobility of nodes and services as well as
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rapid fluctuations in performance. There is usually no pre-
configured support for describing, locating, and gaining ac-
cess to available services in these heterogeneous, mobile net-
works. While the packet routing problem in mobile net-
works has been extensively researched [6, 32], the impor-
tant functions of resource discovery and service location are
only recently beginning to receive attention in the research
community. We believe that this is an important problem
to solve because the cost of deploying and running such a
network infrastructure is dominated by software and service
management, while diminishing hardware costs are making
it cheap to network all sorts of devices. Examples of applica-
tions in such environments include sending a job to the clos-
est (based on geographic location) and least-loaded printer,
retrieving files from a mobile, replicated server based on net-
work performance and server load, and retrieving the current
image from all the mobile cameras in a particular section of
a building.

Based on our target environment and applications, we
identify the following important design goals for a naming
system that enables dynamic resource discovery and service
location:

� Expressiveness.The naming system must be flexible
in order to handle a wide variety of devices and ser-
vices. It must allow applications to express arbitrary
service descriptions and queries.

� Responsiveness. The naming system must adapt
quickly to end-node and service mobility, performance
fluctuations, and other factors that can cause a change
in the “best” network location of a service.

� Robustness.The naming system must be resilient to
name resolver and service failures as well as inconsis-
tencies in the internal state of the resolvers.

� Easy configuration. The name resolvers should con-
figure themselves with minimal manual intervention
and the system should not require manual registration
of services. The resulting system should automatically
distribute request resolution load among resolvers.

The main contribution of our work is the design and
implementation of INS, an Intentional Naming System that
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meets the above goals. Because applications in our envi-
ronment (as in many distributed environments) often do not
know the best network location that satisfies their needs for
information or functionality, we argue in favor of aninten-
tional naming scheme and resolution architecture in which
applications describewhat they are looking for, notwhere
to find it. Name resolvers in the network route requests to
the appropriate locations by maintaining a mapping between
service descriptions and their network locations.

INS achieves expressiveness by using an intentional
name language based on a hierarchy of attributes and val-
ues, allowing nodes that provide a service to precisely de-
scribe what they provide and consumers to easily describe
what they require. Names based on attributes and values
have been suggested before in other contexts [5, 7, 13, 45]
and we draw upon previous work in this area in designing
our naming language. While several complex query lan-
guages based on attributes and values exist in the literature,
ours is particularly simple and has a small set of commonly
used operators, which makes it lightweight and easy to im-
plement even on impoverished devices. We also design the
INS resolution architecture to be independent of the specific
language used to perform queries, so that it can also be used
in the context of other service description languages.

An important characteristic of our target environment is
mobility, where the network location (e.g., IP address) of an
end-node changes.Node mobilitymay occur due to phys-
ical mobility or when a node changes the network used to
communicate (e.g., changing from an wired Ethernet to a ra-
dio frequency network). Another form of mobility isservice
mobility, where the network addresses of a service does not
change, but the end-nodes mapping to a service change be-
cause of a change in the values of the attributes sought by
clients. In addition, our environment is dynamic because of
performance fluctuations—as the load on service nodes and
paths in the network changes, so does the location of the best
node to serve each client request. Hence, INS should reflect
performance changes in the results of name resolution.

In INS, clients use an intentional name to request a ser-
vice without explicitly listing the end-node(s) that ultimately
serve the request. This “level of indirection” provided by
an intentional name allows applications to seamlessly con-
tinue communicating with end-nodes even though the map-
ping from name to end-node addresses may change during
the session, transparent to the client. Thus, INS supports mo-
bile applications, which use intentional names rather than IP
addresses.

INS achieves responsiveness byintegratingname resolu-
tion and message routing, operations that have traditionally
been kept separate in network architectures. INS applica-
tions benefit from this abstraction using alate bindingop-
tion, where the binding between the intentional name and
network location(s) is made at message delivery time rather
than at request resolution time. This binding is “best-effort”
since INS provides no guarantees on reliable message deliv-
ery. Thus, INS uses an intentional name not only to locate
services, but also to route messages to the appropriate end-
points. This integration leads to a general method for per-

forming application-level routing using names, effected by
applications including data with the name resolution query.

Our integrated routing and resolution system provides
two basic types of message delivery service using late bind-
ing. An application may request that a message be deliv-
ered to the “optimal” service node that satisfies a given in-
tentional name, calledintentional anycast. Here, the metric
for optimality is application-controlled and reflects a prop-
erty of the service node such as current load. A second type
of message delivery,intentional multicast,is used to deliver
data toall service nodes that satisfy a given name, for exam-
ple, the group of sensors that have all recorded sub-zero tem-
peratures. These two delivery services allow INS to achieve
application-levelanycast and multicast.

In keeping with the end-to-end principle [37], we leave
the underlying network-layer addressing and routing of the
IP architecture unchanged. Rather, our approach to provid-
ing these services is to layer them as an overlay network
over unicast IP. The only network layer service that we rely
upon is IP unicast, which is rapidly becoming ubiquitous in
mobile and wireless environments1.

Another reason for leaving the core infrastructure un-
modified is that often, a network-layer service does not per-
fectly match the requirements of the application at hand. In-
deed, performing anycast on a specific network-layer crite-
rion such as hop-count, network latency or available band-
width, is ineffective from the point of view of many ap-
plications because it does not optimize the precise metric
that applications require. For example, a network-layer any-
cast [31] to find the “best” printer on a floor of a building
cannot locate theleast-loadedprinters. To remedy this, INS
allows intentional anycast based onapplication-controlled
metrics, where resolvers select the least value according to a
metric that is meaningful to and advertised by applications.

Despite allowing application-controlled routing metrics,
INS presents a simple and well-defined service model for
intentional anycast and multicast. In contrast to the active
networks architecture [41, 46] and their naming counterpart,
ActiveNames [43], where arbitrary code and services may
be injected into the data path to customize the functions of
an IP router or name resolver, INS resolvers do not run ar-
bitrary code nor embed any application-specific semantics
in the routing and resolution architecture. Instead, our sys-
tem relies on structured names to express application pa-
rameters. This decision to leave IP unicast unmodified is
based on the difficulties encountered in deploying other IP
extensions, for example, IP multicast [12], guaranteed ser-
vices [10], and more recently, active IP networks [46]. In
this sense, one may view the INS architecture as similar in
philosophy to application-level anycast [3] and Web server
selection, which have recently gained in popularity.

INS uses a decentralized network of resolvers to discover
names and route messages. To ease configuration, INS re-
solvers self-configure into an application-level overlay net-
work and clients can attach to any of them to resolve their
requests and advertise services. These resolvers usesoft-
state[9] periodic advertisements from services to discover
1 Note that we do not rely on Mobile IP [32] in INS.
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names and delete entries that have not been refreshed by
services, eliminating the need to explicitly de-register a ser-
vice. This design gracefully handles failures of end-nodes
and services. They also implement load-balancing and load-
shedding algorithms, which allows them to scale well to sev-
eral thousand services.

The INS resolution architecture presented in this paper
makes three key contributions: (i) it integrates resolution
and routing, allowing applications to seamlessly handle node
and service mobility, and provides flexible group communi-
cation using an intentional name as the group handle; (ii)
its resolvers self-configure into an overlay network and in-
corporate load-balancing algorithms to perform well; and
(iii) it maintains weak consistency amongst replicated re-
solvers using soft-state message exchanges. These features
distinguish it from other service discovery proposals made
in the recent past, including the IETF Service Location Pro-
tocol (SLP) [44, 33], Sun’s Jini service discovery [21], the
Simple Service Discovery Protocol [19], universal plug-and-
play [42], and Berkeley’s service discovery service [11].

An important feature of our architecture is its potential
for incremental and easy deployment in the Internet, without
changing or supplanting the existing Internet service model.
INS is intended for dynamic networks on the order of several
hundred to a few thousand nodes, many of which could be
mobile (e.g., inside a single administrative domain, build-
ing, office or home network). We note, however, that the
architecture presented in this paper is not directly applica-
ble in the wide-area Internet. We are currently developing
a wide-area architecture to complement this intra-domain
INS architecture. However, despite this cautionary note, our
performance results show that our resolution algorithms and
load-balancing strategies permit a network of INS resolvers
to scale to several thousand names and services. Our exper-
imental results show that the time to discover new names is
on the order of tens of milliseconds. We find that the time to
process name updates is the performance bottleneck in many
cases, and describe a technique to partition the namespace
amongst resolvers to alleviate this problem.

To demonstrate the utility of INS, we describe its pro-
gramming interface and the implementation of three appli-
cations:Floorplan, a map-based service discovery tool for
location-dependent services,Camera, a mobile camera net-
work for remote surveillance, andPrinter, a load-balancing
printer utility that sends user print requests to the best printer
based on properties such as physical location and load.
These applications use the INS API and support for mo-
bility, group communication, and service location, gaining
these benefits without any other pre-installed support (e.g.,
Mobile IP [32], IP multicast [12], SLP [44], etc.) for these
features.

The rest of this paper is organized as follows. We de-
scribe the INS architecture in Section 2, the API and some
applications in Section 3, our implementation in Section 4,
its performance in Section 5, related work in Section 6, and
our conclusions in Section 7.

2 System architecture

INS applications may beservicesorclients: services provide
functionality or data and clients request and access these.In-
tentional Name Resolvers (INRs)route client requests to the
appropriate services, implementing simple algorithms and
protocols that may be implemented even on computationally
impoverished devices. Any device or computer in anad hoc
network can potentially act as a resolver, and a network of
cooperating resolvers provides a system-wide resource dis-
covery service.

INRs form an application-level overlay network to ex-
change service descriptions and construct a local cache
based on these advertisements. Each service attaches to an
INR and advertises an attribute-value-based service descrip-
tion and an application-controlled metric. Each client com-
municates with an INR and requests a service using a query
expression. Because service descriptions are disseminated
through the INR network in a timely manner, a new service
becomes known to the other resolvers and through them to
the clients.

When a message arrives at an INR, it is resolved on the
basis of the destination name. The INR makes a resolu-
tion/forwarding decision depending on the specific service
requested by the client application. If the application has
chosen early binding (selected using theearly-binding flag
in the request), the INR returns a list of IP addresses corre-
sponding to the name. This is similar to the interface pro-
vided by the Internet Domain Name System (DNS) [27] and
most other existing service discovery systems, and is useful
when services are relatively static. When there are multiple
IP addresses corresponding to a name, the client may select
an end-node with the least metric, which is available from
the result of the resolution request. This metric-based reso-
lution is richer than round-robin DNS resolution.

INS applications use the two late binding options—
intentional anycast and intentional multicast—to handle
more dynamic situations. Here, the network addresses are
not returned to the client, but instead, the INR forwards the
name and the associated application payload directly to the
end-nodes (e.g., services). If the application requests inten-
tional anycast, the INR tunnels the message to exactly one of
the end-nodes in its list that has the least metric. In INS, this
metric does not reflect a network-layer metric such as hop-
count used in network-layer anycast [31]; rather, INS allows
applications to advertise arbitrary application-specific nu-
meric metrics such as average load. In intentional multicast,
the INR forwards each message to all next-hop INRs asso-
ciated with the destination name. The message is forwarded
along the INR overlay to all the final destination nodes that
match the name.

INRs self-configure into a spanning-tree overlay net-
work topology, optimizing the average delay between neigh-
boring INRs. In constructing this overlay topology, we use
measurements of INR-to-INR round-trip time. The span-
ning tree is used to disseminate service descriptions as well
as receiver subscriptions. Unlike other overlay networks
that maintain pre-configured, static neighbors such as the

188



2

1

3Client using early binding

Client using intentional multicast

Service

INR network

intentional name
network location

data

intentional name + data

Service  announcing 
an intentional name

Client  discovering
an intentional name

intentional names

4

5

Client using intentional anycast

6

7

intentional name + data

query

names

INR

Service

Figure 1 . The architecture of the Intentional Naming System. The upper-left corner shows an application using
early binding: the application sends an intentional name to an INR to be resolved (1), receives the network location
(2), and sends the data directly to the destination application (3). The middle-left shows an application using
intentional anycast—the application sends an intentional name and the data to an INR (4), which tunnels to exactly
one of the destinations that has the least metric (5). The lower-left corner shows an application using intentional
multicast: the application sends an intentional name and the data to an INR, which forwards it through the INR
network to all of the destination applications. The lower-right corner shows an application announcing intentional
names to an INR. The intentional names are beginning to propagate throughout the INR network. An application
discovering names sends a query to an INR (6), receives a set of names that match the name in query.

MBone [14] or the 6Bone [17], INRs can be spawned or
terminated and automatically adjust their neighbor relation-
ships based on network conditions. They also implement
load-balancing algorithms to perform better, by spawning
new resolvers on other nodes when the incoming request
rate is high and delegating portions of the namespace to the
newly spawned instances.

Figure 1 summarizes the architecture of INS, illustrating
how applications and INRs interact.

2.1 Name-specifiers

INS implements intentional names using expressions called
name-specifiers. Clients use name-specifiers in their mes-
sage headers to identify the desired destinations (and
sources) of messages. Name-specifiers are designed to be
simple and easy to implement. The two main parts of the
name-specifier are theattributeand thevalue. An attribute
is a category in which an object can be classified, for exam-
ple its ‘color.’ A value is the object’s classification within
that category, for example, ‘red.’ Attributes and values are
free-form strings2 that are defined by applications; name-
specifiers do not restrict applications to using a fixed set of
attributes and values. Together, an attribute and its associ-
ated value form anattribute-value pairor av-pair.

2 Attributes and values being free-form strings is not a fundamen-
tal property; fixed length integers could be used just as easily if
the bandwidth or processing power required for handling names
is a concern. Not having human readable strings makes debug-
ging more difficult, but does not affect normal use of the system,
since applications still need to understand the semantics of at-
tribute and values to present them to users.

A name-specifier is a hierarchical arrangement of av-
pairs such that an av-pair that isdependenton another is
a descendant of it. For instance, in the example name-
specifier shown in Figure 2, a building called the Whitehouse
is meaningful only in the context of the city of Washing-
ton, so the av-pairbuilding=whitehouse is dependent on
the av-paircity=washington. Av-pairs that areorthog-
onal to each other but dependent on the same av-pair, are
siblings in the tree. For example, a digital camera’s data-
type and resolution can be selected independently of each
other, and are meaningful only in the context of the cam-
era service. Therefore, the av-pairsdata-type=picture
andresolution=640x480 are orthogonal. This hierarchi-
cal arrangement narrows down the search space during name
resolution, and makes name-specifiers easier to understand.

A simpler alternative would have been to construct a hi-
erarchy of attributes, rather than one of av-pairs. This would
result inbuilding being directly dependent oncity, rather
thancity=washington. However, it is also less flexible;
our current hierarchy allows child attributes to vary accord-
ing to their parent value. For example,country=us has a
child that isSTATE=virginia, whilecountry=canadahas
a child that isPROVINCE=ontario.

Name-specifiers have a representation (Figure 3) that is
used when they are included in a message header to describe
the source and destination of the message. This string-based
representation was chosen to be readable to assist with de-
bugging, in the spirit of other string-based protocols like
HTTP [16] and NNTP [22]. Levels of nesting are indicated
by the use of brackets ([ and]), and attributes and values are
separated by an equals sign (=). The arbitrary use of whites-
pace is permitted anywhere within the name specifier, except
in the middle of attribute and value tokens.
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Figure 2 . A graphical view of an example name-
specifier. The hollow circles are used to identify at-
tributes; the filled circles identify values. The tree is
arranged such that dependent attributes are descen-
dants, and orthogonal attributes are siblings. This
name-specifier describes a public-access camera in
the Oval office.

[city = washington [building = whitehouse

[wing = west

[room = oval-office]]]]

[service = camera [data-type = picture

[format = jpg]]

[resolution = 640x480]]

[accessibility = public]

Figure 3 . The wire representation of the example
name-specifier shown in Figure 2, with line-breaks and
extra spacing added to improve readability.

In addition to exact-value matches, name-specifiers also
permit wild-card matching of values. To do this, the value
is simply replaced by the wild-card token (*). Thus to
construct a name-specifier that refers toall public cam-
eras providing 640x480 pictures in the West Wing of the
Whitehouse, not just the one in the Oval Office, an applica-
tion replaces the valueoval-office with ‘*’ in the name-
specifier shown in Figures 2 and 3. We are currently incor-
porating inequality operators (<, >, �, and�) to provide
range selection operations in name-specifiers, to augment
the matches described above.

2.2 Discovering names

Services periodically advertise their intentional names to the
system to describe what they provide. Each INR listens to
these periodic announcements on a well-known port to dis-
cover services running at different end-nodes. INRs repli-
cate and form an overlay network among themselves, over
which they send updates of valid names in the system.

The name discovery protocol treats name information
as soft-state [9, 35], associated with a lifetime. Such state
is kept alive or refreshed whenever newer information be-
comes available and is discarded when no refresh announce-
ment is received within a lifetime. Rapid changes due to
node mobility quickly propagate through the system and
new information automatically replaces old, outdated infor-

mation. Soft-state enables robust operation of the system
since INRs can recover from errors and failures automati-
cally without much disruption because incorrect information
is updated by new messages. This choice allows a design
where applications may join and leave the system without
explicit registration and de-registration, because new names
are automatically disseminated and expired names automat-
ically eliminated after a timeout.

When clients make name resolution requests, INRs use
the information obtained using service advertisements and
INR updates to resolve them. In addition to sending resolu-
tion requests, clients can discover particular types of names
or all known names in the system by sending aname discov-
ery message to an INR, specifying an intentional name for
the INR to match with all the names it knows about. This
mechanism is useful for clients to bootstrap in a new envi-
ronment.

INRs disseminate name information between each other
using a routing protocol that includesperiodicupdates and
triggeredupdates to their neighbor INRs. Each update con-
tains the following information about a name-specifier:

� The IP addresses for this name-specifier and a set of
[port-number, transport-type] pairs for each
IP address. The port number and transport type (e.g.,
HTTP [2], RTP [38], TCP [34], etc.) are returned to
the client to allow it to implement early binding.

� An application-advertised metric for intentional any-
cast and early binding that reflects any property that
the service wants anycast routing on, such as current
or average load.

� The next-hop INR and the metric, currently the INR-
to-INR round-trip latency in the overlay network for
the route, used for intentional multicast.

� A unique identifier for the announcer of the name
called theAnnouncerID, used to differentiate identical
names that originate from two different applications on
the same node.

INRs use periodic updates to refresh entries in neigh-
boring INRs and to reliably flood names. Triggered updates
occur when an INR receives an update from one of its neigh-
bors (either an INR or a client or service) that contains new
information (e.g., a newly discovered name-specifier) or in-
formation that is different from the one previously known
(e.g., better metric)3.

For applications requiring intentional multicast, INRs
forward the name and payload message through the over-
lay network to all of the network locations that announce a
given name. In our current implementation, INRs use the
distributed Bellman-Ford algorithm [1] to calculate shortest
path trees to those end-nodes announcing the name. Unlike

3 For inter-INR communications we could have had the INRs use
reliable TCP connections and send updates only for entries that
change, perhaps eliminating periodic updates at the expense of
maintaining connection state in the INRs. We do not explore this
option further in this paper, but intend to in the future.
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traditional routing protocols that use the algorithm [26], the
INS architecture allows multiple identical names to exist in
the system. The unique AnnouncerID ensures that routes to
identical names can be differentiated. In our implementa-
tion, applications generate an AnnouncerID by concatenat-
ing their IP address with their startup time, allowing multiple
instances to run on the same node.

2.3 Name lookup and extraction

The central activity of an INR is to resolve name-specifiers
to their corresponding network locations. When a message
arrives at an INR, the INR performs a lookup on the desti-
nation name-specifier in its name-tree. The lookup returns
a name-record, which includes the IP addresses of the des-
tinations advertising the name as well as a set of “routes”
to next-hop INRs. The late binding process for anycast and
multicast do not change the name-specifiers or data in any
way. By integrating resolution with routing in the late bind-
ing process, INS enables seamless communication between
clients and services even if the name-to-location mapping
changes during the session.

The rest of this section describes how names are stored
at an INR, lookups are performed on an incoming name, and
how names are extracted for periodic or triggered updates in
the name discovery protocol.

2.3.1 Name-trees

Name-trees are a data structure used to store the correspon-
dence between name-specifiers and name-records. The in-
formation that the name-records contain are the routes to the
next-hop INRs, the IP addresses of potential final destina-
tions, the metric for the routes, end-node metrics for inten-
tional anycast, and the expiration time of the name-record.

The structure of a name-tree bears a close resemblance
to a name-specifier. Like a name-specifier, it consists of al-
ternating levels of attributes and values, but unlike a name-
specifier there can be multiple values per attribute, since
the name-tree is a superposition of all the name-specifiers
the INR knows about. Each of these name-specifiers has a
pointer from each of its leaf-values to a name-record. Fig-
ure 4 depicts an example name-tree, with the example name-
specifier from Figure 2 in bold.

2.3.2 Name lookup

The LOOKUP-NAME algorithm, shown in Figure 5, is used
to retrieve the name-records for a particular name-specifier
n from the name-treeT . The main idea behind the algo-
rithm is that a series of recursive calls reduce the candidate
name-record setS by intersecting it with the name-record
set consisting of the records pointed to by each leaf-value-
node. When the algorithm terminates,S contains only the
relevant name-records.

The algorithm starts by initializingS to the set of all
possible name-records. Then, for each av-pair of the name-
specifier, it finds the corresponding attribute-node in the
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Figure 4 . A partial graphical view of an example INR
name-tree. The name-tree consists of alternating lay-
ers of attribute-nodes, which contain orthogonal at-
tributes, and value-nodes, which contain possible val-
ues. Value-nodes also contain pointers to all the name-
records they correspond to. The part of the name-tree
corresponding to the example name-specifier shown in
Figure 2 is in bold.

name-tree. If the value in the av-pair is a wild card, then it
computesS0 as the union of all name-records in the subtree
rooted at the corresponding attribute-node, and intersectsS
with S0. If not, it finds the corresponding value-node in the
name-tree. If it reaches a leaf of either the name-specifier
or the name-tree, the algorithm intersectsS with the name-
records at the corresponding value-node. If not, it makes a
recursive call to compute the relevant set from the subtree
rooted at the corresponding value-node, and intersects that
with S.

This algorithm uses the assumption that omitted at-
tributes correspond to wild-cards; this is true for both queries
and advertisements. A nice property of the algorithm is that
it executes in a single pass without any backtracking. This
also means that wild-cards should be used only on the leaf
values (any av-pairs after a wild-card will be ignored).

Section 5.1 analyses this algorithm and discusses the ex-
perimental results of our implementation.
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LOOKUP-NAME(T ,n)
S  the set of all possible name-records
for each av-pairp := (na; nv) in n
Ta  the child ofT such that

Ta’s attribute =na’s attribute
if Ta = null

continue

if nv = * . wild card matching
S0  ;
for eachTv which is a child ofTa
S0  S0 [ all of the name-records in the

subtree rooted atTv
S  S \ S0

else . normal matching
Tv  the child ofTa such that

Tv ’s value =nv ’s value
if Tv is a leaf node orp is a leaf node
S  S \ the name-records ofTv

else
S  S \ LOOKUP-NAME(Tv, p)

return S[ the name-records ofT

Figure 5 . The LOOKUP-NAME algorithm. This algo-
rithm looks up the name-specifier n in the name-tree T
and returns all appropriate name-records.

2.3.3 Name extraction

To send updates to neighboring INRs, an INR needs to get
name-specifiers from its name-tree to transmit. Since the
name-tree is a superposition of all the name-specifiers the
INR knows about, extracting a single name-specifier is non-
trivial. The GET-NAME algorithm, shown in Figure 6, is
used to retrieve the name-specifiers for a particular name-
recordr from the name-treeT . The main idea behind the al-
gorithm is that a name-specifier can be reconstructed while
tracing upwards to the root of the name-tree from parent
of the name-record, and grafting on to parts of the name-
specifier that have already been reconstructed.

All the value-nodes in the name-tree,T , are augmented
with a “PTR” variable, which is a pointer to the correspond-
ing av-pair in the name-specifier being extracted. Initially,
all the PTRs are set tonull, since they have no correspond-
ing av-pairs; the root pointer (T .PTR) is set to point to a new,
empty name-specifier. Then, for each parent value ofr, the
algorithm traces upwards through the name-tree. If it gets to
part of the name-tree where there is a corresponding av-pair
(v.PTR != null), and it has a name-specifier subtree to graft
on to (s != null), it does so. If not, it creates the correspond-
ing part of the name-specifier, setsv.PTR to it, grafts ons
if applicable, and continues the trace with the parent value
of v and the new subtree. Figure 7 illustrates an in-progress
execution of the algorithm.

GET-NAME(T ,r)
n a new, empty name-specifier
T .PTR n
for eachTv which is a parent value-node ofr

TRACE(Tv , null)
reset all PTRs that have been set tonull
return n

TRACE(Tv,n)
if Tv.PTR 6= null . something to graft onto

if n 6= null . something to graft
graftn as a child ofTv.PTR

else . nothing to graft onto; make it
Tv.PTR a new av-pair consisting of

Tv ’s value and its parent’s attribute
if n 6= null . something to graft

graftn as a child ofTv.PTR
TRACE(parent value-node ofTv, Tv.PTR)

Figure 6 . The GET-NAME algorithm. This algorithm
extracts and returns the name-specifier for the name-
record r in the name-tree T . TRACE implements most
of the functionality, tracing up from a leaf-value until it
can graft onto the existing name-specifier.

2.4 Resolver network

To propagate updates and forward data to services and
clients, the INRs must be organized as a connected network.
In our current design, this application-level overlay network
is constructed in a distributed way by INRs self-configuring
to form a spanning tree based on metrics that reflect INR-to-
INR round-trip latency. The experiments conducted by the
INRs to obtain this metric are calledINR-pings,which con-
sist of sending a small name between INRs and measuring
the time it takes to process this message and get a response.

A list of active and candidate INRs is maintained by a
well-known entity in the system, called theDomain Space
Resolver(DSR). The DSR may be thought of as an exten-
sion to a DNS server for the administrative domain in which
we currently are, and may be replicated for fault-tolerance.
DSRs support queries to return the currently active and can-
didate INRs in a domain.

When a new INR comes up, it contacts the DSR to get a
list of currently active INRs. The new INR then conducts a
set of INR-pings to the currently active INRs and picks the
one with the minimum value to establish a neighbor rela-
tionship (orpeer) with. If each INR does this, the resulting
topology is a spanning tree. Because the list of active INRs
is maintained by the DSR, and all the other INRs obtain the
same list, race conditions are avoided and one can impose a
linear order amongst the active INRs based on the order in
which they became active in the overlay network. Each INR
on the active list, except the first one, has at least one neigh-
bor ahead of it in the linear order, and the resulting graph is
clearly connected by construction. Furthermore, each time
a node arrives after the first one, it peers with exactly one
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Figure 7 . An illustration of an in-progress execution
of the GET-NAME algorithm. The name-specifier being
created is shown in gray on the left, while the name-
tree it is being created from is shown in black on the
right. The parts of the name-tree that are circled with
dotted lines are the paths through the name-tree that
have been traced. The dotted arrows are used to illus-
trate the assignments of the PTR variables. The thick
arrows indicate the parts of the data structures that
are currently being manipulated. In this example, the
name-specifier fragment rooted at n is being grafted
onto Tv:PTR, which is part of the main name-specifier.

node, so the number of links formed in ann�node network
is n� 1. Any connected graph withn nodes andn� 1 links
must be a tree.

Of course, despite each node making a local minimiza-
tion decision from the INR-pings, the resulting spanning
tree will not in general be the minimum one. We are cur-
rently working on improving this configuration algorithm by
designing a relaxation phase that asynchronously changes
neighbor relationships to eventually converge to an optimal
tree in the absence of mobility. We also note that a span-
ning tree may not be a sufficiently robust overlay topology
to exchange names and perform intentional multicast, be-
cause it has several single points of failure. We are currently
exploring other algorithms for constructing more redundant
overlay structures.

2.5 Load balancing and scaling

There are two potential performance and scaling bottlenecks
in the system—lookups and name update processing. To
handle excessive lookup loads, we allow INRs to spawn in-
stances on other candidate (but currently inactive) resolvers,
and kill themselves if they are not loaded. To spawn an INR
on a candidate node, an INR obtains the candidate-node in-
formation from the DSR. An INR can also terminate itself
if its load falls below a threshold, informing its peers and
the DSR of this. The spanning tree overlay algorithm then
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Figure 8 . An example of a CPU-bound configuration
of INS. The Pentium II processor is saturated well be-
fore a 1mbit/s link. Numbers are shown with refreshes
happening every 15 seconds.

adjusts to these changes in the active INR list.
Since INRs exchange name information with other re-

solvers on a periodic basis and also via triggered updates, up-
date scalability is a serious concern. That is, after a point, the
volume of name updates will start to saturate either the avail-
able bandwidth or processing capacity of a given resolver
node. We conducted several experiments to understand the
bottlenecks in our design. While the link bandwidth and pro-
cessing time required for the name update protocol depends
on the size of the name-specifiers and the complexity of the
name tree, we found that the process was CPU-bound in all
our experiments. On our Java implementation between var-
ious Pentium II machines running Linux RedHat 5.2 over
1-5 Mbps wireless links, we found that for a relatively rapid
refresh interval of 15 seconds with randomly-generated 82-
byte intentional names, the processor was saturated before
the bandwidth consumption was 1 Mbps (Figure 8). We also
found that the name processing in the name dissemination
protocol dominated the lookup processing in most of our ex-
periments. This occurs because in this design, all the re-
solvers need to be aware of all the names in the system and
have to process them.

Based on these experiments and a better understanding
of the scaling bottleneck, we describe a solution that alle-
viates it. The idea is to partition the namespace into sev-
eral virtual spaces, ensuring that each resolver only needs
to route for a subset of all the active virtual spaces in the
system. Conceptually, there is now one resolver overlay net-
work per virtual space (however, the overlays for different
virtual spaces may span the same resolver nodes).

More formally, we define a virtual space to be an
application-specified set of names that share some attributes
in common. For instance, all the cameras in building NE-43
at MIT could form thecamera-ne43virtual space, and all
the devices in the building NE43 could form thebuilding-
NE43virtual space. In the first case, the names (services) in
the space might share the “service” (equal to “camera”) and
“location” (equal to NE-43 in MIT) attributes in common,
while in the second case, they all share the same location.
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Figure 9 . Periodic update times when the names are
divided into two equally-sized spaces.

INS does not assume particular virtual space names in the
system, but does require that each service name the virtual
spaces it belongs to (it may belong to multiple virtual spaces
too). Clients and applications may interact with services in
any virtual space.

An INR knows which virtual space an advertisement
or query belongs to because it standardizes a well-known
attribute, “vspace” by which applications can express the
name of their virtual space. The names of two virtual spaces
for different sets of services must not collide, and we are cur-
rently exploring ways of handling this issue. Internally, an
INR stores the names of different virtual spaces in separate,
self-contained name trees.

Partitioning virtual spaces appears to be a promising way
to shed load and significantly improve the scalability of INS,
especially up to several thousand services. Based on several
experiments, we found that the processing time required for
periodic updates reduces proportionally when we partition
the names into different virtual spaces and then distribute
them on to separate resolvers, as shown in Figure 9. If an
INR gets a request from a client to resolve for a virtual space
it does not route for, it needs to forward the request to a
resolver that does. This can be done by caching the resolvers
for a small number of popular virtual spaces, and if a cache
miss occurs, sending the request to the DSR to be resolved
by an appropriate resolver.

In summary, two simple techniques hold promise for
scaling the current performance of INS. If an INR is heavily
loaded because of name lookups, it can obtain a candidate-
INR list and spawn a new INR to handle some of its current
load. The configuration protocol used by clients to pick a
default INR will cause some of them to move to the newly
spawned INR. If an INR is loaded because of update pro-
cessing, it is likely that all the INRs in that virtual space are
also loaded. Therefore, the solution is not to spawn another
one for the same space, but todelegateone or more virtual
spaces to a new INR network. Our experimental results in-
dicate that this is a promising approach to take and we have
started implementing this idea.

3 Applications

This section describes the INS API and three of the applica-
tions we have developed using it that leverage its support for
resource discovery, mobility, and group communication. We
describeFloorplan, a map-based discovery tool for location-
dependent services,Camera, a mobile camera network, and
Printer, a load-balancing printer utility.

An application uses the API to create a name-specifier
for a service and to periodically advertise it to the INR net-
work. To discover new services, an application uses the
API to send adiscoverymessage to an INR to find out what
services matching a given name-specifier have been discov-
ered by it. After discovering name-specifiers, the applica-
tion communicates with the corresponding services by us-
ing the API functions to construct a message. Applications
choose intentional anycast or intentional multicast by setting
theDeliverybit-flag in the message header, and early or late
binding by setting theBindingbit-flag.

3.1 Floorplan: a service discovery tool

Floorplan is a service discovery tool that shows how various
location-based services can be discovered using the INS. As
the user moves into a new region, a map of that region pops
up on her display as a building floorplan.Floorplan learns
about new services by sending adiscoverymessage to an
INR. This message contains a name-specifier that is used as
a filter, and all the name-specifiers that match it are sent back
to the application. Floorplan uses the location and service
information contained in the returned name-specifiers to de-
duce the location and the type of each service and display
the appropriate icon.

An important component ofFloorplan is Locator, a lo-
cation server. Rather than directly incorporate maps of re-
gions, Floorplan retrieves them as needed fromLocator.
This retrieval is done by sending a request using a name-
specifier such as:
[service=locator[entity=server]][location].
In response,Locator retrieves the desired map and sends
it back to the requestingFloorplan instance, using the re-
questor’s intentional name to route the message.

As services are announced or timed out, new icons are
displayed or removed. Clicking on an icon invokes the
appropriate application for the service the icon represents.
The implementation ofFloorplan deployed in our building
allows users to discover a variety of services including
networked cameras (Section 3.2), printers (Section 3.3),
and device controllers for TV/MP3 players. These service
providers advertise name-specifiers specifying several of
their attributes, including their location in the building. For
example, a camera in Room 510 advertises the following
name-specifier:
[service=camera[entity=transmitter][id=a]][room=510]
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3.2 Camera: a mobile camera service

We have implemented a mobile camera service,Camera,
that uses INS. There are two types of entities inCamera:
transmitters and receivers. A receiver requests images from
the camera the user has chosen (inFloorplan) by sending
requests to an intentional name that describes it. These
requests are forwarded by INRs to aCameratransmitter,
which sends back a response with the picture.

There are two possible modes of communication be-
tween camera transmitters and receivers. The first is a
request-response mode, while the second is a subscription-
style interaction that uses intentional multicast for group
communication. In the request-response mode, a receiver
sends an image request to the transmitter of interest by ap-
propriately naming it; the corresponding transmitter, in turn,
sends back the requested image to the receiver. To send the
image back to only the requester, the transmitter uses theid

field of the receiver that uniquely identifies it.Camerauses
this to seamlessly continue in the presence of node or camera
mobility.

For example, a user who wants to request an image from
a camera in room 510 can send out a request to INRs with
destination name-specifier:
[service=camera[entity=transmitter]][room=510]

and source name-specifier:
[service=camera[entity=receiver][id=r]][room=510]

The transmitter that receives this request will send back the
image with the source and destination name-specifiers in-
verted from the above. Theroom attribute in the destination
name-specifier refers to thetransmitter’slocation; theid at-
tribute allows the INRs to forward the reply to the interested
receiver.

When a mobile camera moves to a different network lo-
cation, it sends out an update to an INR announcing its name
from the new location. The name discovery protocol ensures
that outdated information is removed from the name-tree,
and the new name information that reflects the new network
location will soon come into effect. Thus, any changes in
network location of a service is rapidly tracked and refreshed
by INRs, allowing applications to continue.

In addition to such network mobility, INS also allows
applications to handle service mobility. Here, a service such
as a mobile camera moves from one location to another, and
its network location does not (necessarily) change. How-
ever, its intentional name may change to reflect its new loca-
tion or any new properties of the new environment it has ob-
served, and it may now be in a position to provide the client
with the information it seeks. With intentional names, such
application-specific properties such as physical location can
be expressed and tracked.

Camerauses intentional multicast to allow clients to
communicate with groups of cameras, and cameras to com-
municate with groups of users. It takes advantage of the
property that an intentional name can be used not only for
rich service descriptions, but also to refer to a group of net-
work nodes that share certain properties that are specified in
their names.

To use this feature, theCameratransmitter sends out an
image destined to all users subscribing to its images by set-
ting theD bit-flag to all. When an INR looks up a name-
specifier, it finds all of the network locations that match it.
Rather than forwarding the data to just the best one of them,
it sends the data to each next-hop INR for which there is
an associated network location. Similarly, a user can also
subscribe toall cameras in the building (or a subset of them
named by certain criteria).

For example, a camera transmitter located in room 510
sends out its images to all of its subscribers at once using the
following destination name-specifier:
[service=camera [entity=receiver][id=*]][room=510]

and set theDelivery bit-flag to all. The use of wild card
[id=*] refers to all subscribers, regardless of their specific
IDs.

When implementingCamera, we noticed that it would
be useful to cache pictures at various places in the network,
so that requests do not have to go back to the original server
every time. To achieve this, we designed anapplication-
independentextension to INS that allows INRs to cache data
packets. Intentional names made the design of application-
independent caching rather simple. With traditional naming
schemes each application provides its own opaque names
for its data units, and today’s distributed caching schemes
are tied to specific applications (e.g., Web caches). In con-
trast, intentional names give applications a rich vocabulary
with which to name their data, while keeping the structure of
these names understandable without any application-specific
knowledge. Thus, the intentional names can be used as a
handle for a cached object. Of course, it is still necessary
to provide additional information to describe if or for how
long the object should be cached; we therefore added a small
number of additional fields to the INS message header to
convey this information to the INRs.

3.3 Printer: a load-balancing printer utility

The printer client application starts when the user clicks on
a printer icon on the floorplan display. The printer client ap-
plication has several features. It can retrieve a list of jobs
that are in the queue of the printer, remove a selected job
from the queue provided the user has permission to do so,
and allow the user to submit files to the printer. Job submis-
sions toPrinter can be done in two ways, one of which uses
intentional anycast to discover the “best” printer according
to location and load characteristics.

The first submission mode is the straightforward “sub-
mit job toname,” where thenameis the printer’s intentional
name. The second mode, which is one we find useful in
day-to-day use, is to submit a job based on the user’s loca-
tion. The printer servers, which are proxies for the actual
printers in our implementation, change the metrics that are
periodically advertised to the INRs taking into account the
error status, number of enqueued jobs, the length of each
one, etc. The INRs forward jobs to the currently least-loaded
printer based on these advertisements, and inform the user
of the chosen printer. Advertising a smaller metric for a less
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loaded printer and using intentional anycast allowsPrinter
to perform automatically balance their load.

For example, to submit a file to the least-loaded printer in
room 517, the printer client sends the file with the following
destination name-specifier:
[service=printer [entity=spooler]][room=517]

and sets theDeliverybit-flag toany. Note that the name of
the printer is omitted on purpose. Using intentional anycast,
INRs automatically pick the route that has the best metric
for the specified printer name-specifier, which corresponds
to the least-loaded printer in room 517.

4 Implementation

We have implemented INS and tested it using a number of
applications, including those described in the previous sec-
tion. Our INR implementation is in Java, to take advantage
of its cross-platform portability; clients and services, how-
ever, are not constrained to be written in Java. In this section,
we present the details of two aspects of INS: the architec-
ture of an INR node, and the packet formats for intentional
names.

INRs use UDP to communicate with each other. At
an INR, theNode object manages all network resources.
It maintains theNameTree that is used to resolve an
intentional name to its corresponding name-record, a
NodeListener that receives all incoming messages, and a
ForwardingAgent to forward messages to INRs and appli-
cations. In addition, aNameDiscoverymodule implements
the name discovery protocol, and aNetworkManagement
application provides a graphical interface to monitor and de-
bug the system, and view the name-tree. At the client, a
MobilityManager detects network movement and rebinds
the UDP socket if the IP address changes, transparent to ap-
plications.

The INR implementation consists of approximately 8500
lines of Java code, of which about 2500 lines are for the INS
API. The API significantly eases application development—
for instance, theFloorplan and Cameraapplications pre-
sented in Section 3 were each implemented in less than 400
lines of Java code (including both service and client code,
but excluding the graphical user-interface), and thePrinter
application in less than 1000 lines.

Figure 10 shows the INS packet format for intentional
names. The binding bit-flag (B) is used to determine whether
early or late binding should be used, while the delivery bit-
flag (D) is used to determine whether intentional anycast or
multicast delivery should be used. Because name-specifiers
are of variable length, the header contains pointers to the
source name-specifier, destination name-specifier, and data,
which give offsets from the beginning of the packet. This
allows the forwarding agent of an INR to find the end of
name-specifiers without having to parse them. INRs do not
process application data. In addition, ahop limit field decre-
ments at each hop and limits the number of hops a message
can traverse in the overlay. Thecache lifetimefield gives
the lifetime the data of this packet may be cached for, with a
value of zero disallowing caching.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version
Pointer to destination name-specifier Pointer to data

Pointer to source name-specifier

Source name-specifier

Destination name-specifier

D

Hop limit

BUnused

Cache lifetime

Figure 10 . The INS message header format.
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Figure 11 . A uniformly grown name-tree. Note that d
= (tree depth)=2 = 1 for this tree.

5 Performance analysis and evaluation

In this section, we analyze the performance of the INS name
lookup algorithm and present the results of our experiments
with the lookup algorithm and name discovery protocol.
These experiments were all conducted using off-the-shelf In-
tel Pentium II 450 MHz computers with a 512 kb cache and
128 Mb RAM, running either Red Hat Linux 5.2 or Win-
dows NT Server 4.0, with our software built using Sun’s Java
version 1.1.7. The network nodes were connected over wire-
less RF links ranging between 1 and 5 Mbps.

5.1 Name lookup performance

5.1.1 Analysis

To understand how INS scales with increasing lookup load,
it is important to analyze the performance of the lookup
algorithm. We analyze the worst-case run-time of the
algorithm as a function of the complexity of the incoming
name-specifier and the name-tree. To simplify the analysis,
we assume that name-specifiers grow uniformly in the
following dimensions (illustrated in Figure 11):

d One-half the depth of name-specifiers
ra Range of possible attributes in name-specifiers
rv Range of possible values in name-specifiers
na Actual number of attributes in name-specifiers

In each invocation, the algorithm iterates through the at-
tributes in the name-specifier, finding the corresponding at-
tribute and value in the name-tree and making a recursive
call. Thus, the run-time is given by the recurrence:

T (d) = na � (ta + tv + T (d� 1));

whereta andtv represent the time to find the attribute and
value respectively. For now, assume that it takes timeb for
the base case:

T (0) = b
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Settingt = ta + tv and performing the algebra yields:

T (d) = na � (t+ T (d� 1))

=
nda � 1

na � 1
� t+ nd�1

a � b

= �(nda � (t+ b))

If linear search is used to find attributes and values, the run-
ning time would be:

T (d) = �(nda � (ra + rv + b));

becauseta / ra andtv / rv in this case.
However, using a straightforward hash table to find these

reduces the running time to:

T (d) = �(nda � (1 + b))

From the above analysis, it seems that thenda factor may
suffer from scaling problems ifd grows large. However,
bothna andd, scale up withthe complexity of a single ap-
plicationassociated with the name-specifier. There are only
as many attributes or levels to a name-specifier as the appli-
cation designer needs to describe the objects that are used
by their application. Consequently, we expect thatd will
be near-constant and relatively small; indeed, all our current
applications have this property in their name-specifiers.

The cost of the base case,b, is the cost of an inter-
section operation between the set of route entries at the
leaf of the name-tree and the current target route set. Tak-
ing the intersection of the two sets of sizes1 ands2 takes
�(max(s1; s2)) time, if the two sets are sorted (as in our im-
plementation). In the worst case the value ofb is of the order
of the size of the universal set of route entries (�(jU j)), but
is usually significantly smaller. Unfortunately, an average
case analysis ofb is difficult to perform analytically since it
depends on the number and distribution of names.

5.1.2 Experiments

To experimentally determine the name lookup performance
of our (untuned) Java implementation of an INR, we con-
structed a large, random name-tree, and timed how long it
took to perform 1000 random lookup operations on the tree.
The name-tree and name-specifiers were uniformly chosen
with the same parameters as in the analysis in Section 5.1.
We variedn, the number of distinct names in the tree, and
measured lookup times. We limited the maximum heap size
of the Java interpreter to 64 Mb and set the initial allocation
to that amount to avoid artifacts from other memory allo-
cation on the machine. The range of our experiments was
limited by the memory required to store the distinct names
to be looked up (part of the experimental apparatus) rather
than the name-tree itself (which is much more compact).

We fixed the parameters atra = 3, rv = 3, na = 2,
andd = 3, and variedn from 100 to 14300 in increments of
100. Our results are shown in Figure 12. For this name-tree
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Figure 12 . Name-tree lookup performance. This graph
shows how the name-tree lookup performance of an
INR varies according to the number of names in its
name-tree.

and name-specifier structure, our performance went from a
maximum of about 900 lookups per second to a minimum
of about 700 lookups per second. This experiment gave us a
practical idea of how the base caseb affects performance.

For the same experiment, we also recorded the amount
of memory allocated by Java to the experiment; this amount
should be greater than the actual name-tree size by only
a constant amount. The strings we used for attribute and
value names were only one (Unicode) character or 16 bits
long, thus the memory is representative of what a more com-
pact encoding of attributes and values would achieve. How-
ever the growth of the name-tree would remain the same,
since after the first thousand names are in the name tree
(where the graph curves up from zero) all of the attributes
and values that exist are stored in the name-tree, and addi-
tional memory usage comes only from additional pointers
and name-records. Our results are shown in Figure 13. The
amount of memory allocated to the name-tree went from
approximately 0.5 megabytes to 4 megabytes as the num-
ber of names was increased. We believe that this order-
of-magnitude of lookup performance is adequate for intra-
domain deployment, because of the load balancing provided
by having multiple INRs and the parallelism inherent in in-
dependent name lookups.

5.2 Name discovery performance

This section shows that INS is responsive to change and
dynamism in services and nodes, by discussing the perfor-
mance of the name discovery protocol. We measured the
performance of INS in discoveringnewservice providers,
which advertise their existence via name-specifiers. Fig-
ure 14 shows the average discovery time of a new name-
specifier as a function ofn, the number of hops in the INR
network from the new name.

When an INR observes a new name-specifier from a ser-
vice advertisement, it processes the update message and per-
forms a lookup operation on the name-tree to see if a name-
specifier with the same AnnouncerID already exists. If it
does not find it, it grafts the name-specifier on to its name-
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Figure 13 . Name-tree size. This graph shows how
the name-tree size varies according to the number of
names in its name-tree.
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Figure 14 . Discovery time of a new network name.
This graph shows that the time to discover a new net-
work name is linear in the number of INR hops.

tree and propagates a triggered update to its neighbors. Thus,
the name discovery time in a network of identical INRs and
links,Td(n) = n(Tl+Tg+Tup+d), whereTl is the lookup
time,Tg is the graft time,Tup is the update processing time,
andd is the one-way network delay between any two nodes.
That is, name discovery time should be linear in the num-
ber of hops. The experimental question is what the slope of
the line is, because that determines how responsive INS is in
tracking changes.

In our experiments the structure of the name-tree on each
INR was relatively constant except for the new grafts, since
we were not running any other applications in the system
during the measurements. Thus, the lookup and graft times
at one INR and the others were roughly the same. As shown
in Figure 14,Td(n) is indeed linear inn, with a slope of less
than 10 ms/hop. This implies that typical discovery times are
only a few tens of milliseconds, and dominated by network
transmission delays.

5.3 Routing performance

In addition to the lookup and discovery experiments, we also
measured the performance of the overall system when both
occur simultaneously. For these experiments, we sent a burst
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Figure 15 . Processing and routing time per INR for a
100-packet burst, in the intra-INR, inter-INR, and inter-
virtual-space cases.

of one hundred 586-byte messages, gathered from theCam-
era application, between 15-second periodic update inter-
vals. The name specifier source and destination addresses
were randomly generated, on average 82 bytes long. The
results are shown in Figure 15.

For the case in which the sender and receiver are on the
same node, the processing and routing time varies some-
what with the name-tree size for the given virtual space,
from 3.1 ms per packet with 250 names to 19 ms per packet
with 5000 names. This is partially due to the speed of the
name-tree lookups, but is also an artifact of the current end-
application delivery code, which happens to vary linearly
with the number of names. We observe a flatter line by when
examining the data for packets destined to a remote INR in
the name-tree of the same virtual space. For the most part,
the next-hop processing time is about 9.8 ms per packet dur-
ing the burst. In this case, name-tree lookups still occur, but
the end-application delivery code is not invoked. This gives
a better indication of the pure lookup and forwarding perfor-
mance.

When the recipient resides in a different virtual space on
another node, we observe a nearly constant time of 381 ms
to resolve and route the burst of 100 messages. This steady
time comes from the node having no knowledge of the end
virtual space except for a next-hop INR address, which is
requested and cached from the DSR on the first access, to
which it can forward packets.

6 Related work

A flexible naming and resolution system for resource dis-
covery, such as that provided by INS, is well-suited to dy-
namic network environments. INS uses a simple, expres-
sive name language, late binding machinery that integrates
resolution and routing for intentional anycast and multicast,
soft-state name dissemination protocols for robustness, and
a self-configuring resolver network.

INS is intended tocomplement,not replace the Internet
DNS, which maps hostnames to IP addresses. DNS names
are strictly hierarchical, whereas INS names use a more ex-
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pressive attribute-based language. Unlike DNS, name prop-
agation in INS resembles a routing protocol, tuned to per-
form rapid updates. In INS, names originate from and
are refreshed by applications that advertise them. This en-
ablesfate sharing[9] between names and the corresponding
services—if a node providing a service crashes, it will also
cease to announce that service. In DNS, resolvers form a
static overlay network consisting of the client’s nameserver,
the root server, and the owner domain’s nameserver to route
and resolve requests, unlike the INS self-configuring over-
lay.

There has been some recent activity in service discovery
for heterogeneous networks of devices. Sun’s Jini [21] pro-
vides a framework for spontaneous distributed computing by
forming a “federation of networked devices” over Java’s Re-
mote Message Invocation (RMI). Jini does not address how
resource discovery will work in a dynamic environment or
when services fail, and can benefit from INS as its resource
discovery system. Universal plug-and-play [42] uses a sub-
set of XML to describe resources provided by devices and,
like Jini, can benefit from INS as a discovery system. The
Service Location Protocol (SLP) [44, 33] facilitates the dis-
covery and use of heterogeneous network resources using
centralized Directory Agents. The Berkeley Service Dis-
covery Service (SDS) [11] extends this concept with se-
cure, authenticated communications and a fixed hierarchi-
cal structure for wide-area operation. Unlike Jini, SLP, and
SDS, INS handles dynamism via late binding, provides in-
tentional anycast and multicast services, has self-configuring
resolvers, and does not rely on IP multicast to perform dis-
covery.

Numerous attribute-based directory services have been
proposed in the past. The X.500 distributed directory [7, 36]
by the CCITT (now the ITU-T) facilitates the discovery of
resources by using a single global namespace with decentral-
ized maintenance. INS differs from X.500 in its goals and
mechanisms to achieve responsiveness and expressiveness;
INS enables late binding and uses soft-state name dissemi-
nation. The INS resolver network is also different from the
static X.500 hierarchy. These differences arise from differ-
ences in our environment, which is a dynamic and mobile
network with little pre-configured infrastructure.

In addition to the wealth of classical literature on nam-
ing in distributed systems (e.g., Grapevine [4], Global Name
Service [23], etc.), there has been some recent research in
wide-area naming and resolution. For example, Vahdatet
al. [43] present a scheme forActiveNames,which allow
applications to define arbitrary computation that executes on
names at resolvers. INS and ActiveNames share some goals
in common, but differ greatly in how they achieve them. In
particular, INS does not require mobile code, relying instead
on a simple but expressive naming scheme to enable appli-
cations to express intent, and late binding to be responsive
to change. In addition, INS implements a self-configuring
resolver network based on network performance.

An early proposal to decouple names from object loca-
tions was described in a paper by O’Toole and Gifford [28],
where they describe a content naming scheme and its ap-

plication to Semantic File Systems [18]. Their design and
application of content names is very different from ours,
but the underlying philosophy is similar. TheDiscoversys-
tem [39] is an HTTP-based document discovery system that
usesquery routingto forward a query to the servers that con-
tain the result. Discover is document-centric and uses paral-
lel processes to search servers and merge the results.

Oki et al. introduce theInformation Bus[30] to allow
applications to communicate by describing the subject of
the desired data, without knowing who the providers are.
Other projects with a similar flavor include Malanet al.’s
Salamander [25] and Talarian’s SmartSockets [40]. These
use a flat naming scheme, do not support late binding, and
have statically configured resolvers. The idea of separating
names from network locations was also proposed by Jacob-
son in the context of multicast-based self-configuring Web
caches [20]. Estrinet al. build on this, exploring a diffusion-
based approach to data dissemination in sensor networks us-
ing data attributes to instantiate forwarding state at sensor
nodes [15]. Our intentional naming scheme has some fea-
tures in common with these proposals, but differs in the de-
tails of the resolution, late binding and name dissemination
processes, as well as the overall resolver architecture.

Cisco’s DistributedDirector [8] resolves a URL to the IP
address of the “closest” server, based on client proximity and
client-to-server link latency. Unlike INS, DistributedDirec-
tor is not a general framework for naming and resolution and
does not integrate resolution and routing. Furthermore, each
resolver is independent in DistributedDirector, whereas they
form a cooperating overlay network in INS.

IBM’s “T Spaces” [24] enable communication be-
tween applications in a network by providing a lightweight
database, over which network nodes can perform queries.
However, this system has been optimized for relatively static
client-server applications rather than for dynamic peer-to-
peer communication, and uses a central database to maintain
tuple mappings. Other architectures for object-oriented dis-
tributed computing are OMG’s CORBA [29] and the ANSA
Trading Service [13], where federated servers resolve client
resolution requests.

Retaining network connectivity during mobility requires
a level of indirection so that traffic to the mobile host can
be redirected to its current location. Mobile IP [32] uses
a Home Agent in the mobile host’s home domain for this.
With INS, the level of indirection to locate mobile services
and users is obtained using the intentional naming system,
since all traffic to the mobile service would go through the
name resolution process. The tight integration of naming
and forwarding enables continued network connectivity in
the face of service mobility, and the decentralized INS archi-
tecture and name discovery protocols enhance robustness. A
number of protocols for ad hoc or infrastructure-free routing
have recently been proposed (e.g., [6]). These protocols,
are essential to enable IP connectivity, but do not provide
resource discovery functionality.
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7 Conclusions

In this paper, we established the need for an intentional nam-
ing scheme, where applications describewhatthey are look-
ing for, notwhereto find data. Our design goals were expres-
siveness, responsiveness, robustness and easy configuration.
We presented the design, implementation and evaluation of
an Intentional Naming System (INS) that meets these goals.
INS uses a simple naming language based on attributes and
values to achieve expressiveness, integrates name resolution
and message routing to allow applications to be responsive
to mobility and performance changes, uses periodic service
advertisements and soft-state name dissemination protocols
between replicated resolvers to achieve robustness, and de-
ploys self-configuring name resolvers to ease configuration.
The INS service model supports three types of resolution:
early binding, where an application can obtain a list of IP
addresses corresponding to a name, and two forms of late
binding: intentional anycast and intentional multicast. In-
tentional anycast forwards a message to the “best” node sat-
isfying a query while optimizing an application-controlled
metric, and intentional multicast forwards a message to all
names satisfying a query.

We presented the design and analysis of an efficient al-
gorithm for name lookups and measurements of our imple-
mentation, which show that a Java implementation can per-
form between several hundred lookups per second (for com-
plex name-specifiers) to a few thousand lookups per second.
We evaluated the name discovery protocol and demonstrated
that INS could disseminate information about new names in
tens of milliseconds. We also measured the the processing
time for name updates, analyzed the scaling bottlenecks, and
found that namespace partitioning is a practical technique to
improve the scalability of INS.

Our experience with INS has convinced us that using
intentional names with late binding is a useful way of dis-
covering resources in dynamic, mobile networks, and sim-
plifies the implementation of applications. We emphasize
that INS allows applications to efficiently track dynamic data
attributes, because the choice of attributes to use in name-
specifiers is completely under application-control. We there-
fore believe that INS has the potential to become an integral
part of future device and sensor networks where decentral-
ized, easily configurable resource discovery is essential.

There remain some important areas of research before
the full benefits of INS can be realized. First, we need to
carefully expand the set of supported operators in the res-
olution process, incorporating range matches in addition to
exact matches of attributes and values. Second, the current
INS architecture is intended for intra-domain deployment.
We are actively developing a wide-area architecture to scale
INS to wide-area networks. Third, the name discovery pro-
tocols need to be tuned to use bandwidth efficiently while
disseminating names; some names are more ephemeral or
more important than others, implying that all names must
not be treated equally by the soft-state dissemination proto-
col [35]. And perhaps most importantly, we need to incorpo-
rate security mechanisms in the naming architecture before

a more wide-scale deployment. Ultimately, the benefits of
INS are in facilitating the development of useful applications
and services, and we are implementing more applications to
demonstrate the benefits of INS and to characterize the class
of applications that INS facilitates.
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