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Abstract

We have designed and implemented a new operating

system facility for 1/0 buffer management and data trans-

fer across protection domain boundm-ies on shared memory

machines. This facility, called ~ast buffers (fbufs), com-

bines virtual page remapping with shared virtual memory,

and exploits locality in I/O traffic to achieve high through-

put without compromising protection, security, or modular-

ity. Its goal is to help deliver the high bandwidth afforded

by emerging high-speed networks to user-level processes,

both in monolithic and microkernel-based operating sys-

tems.

This paper outlines the requirements for a cross-domain

transfer facility, describes the design of the fbuf mechanism

that meets these requirements, and experimentally quanti-

fies the impact of fbufs on network performance.

1 Introduction

Optimizing operations that cross protection domain

boundaries has received a great deal of attention recently

[2, 3]. This is because an efficient cross-domain invocation

facility enables a more modular operating system design.

For the most part, this earlier work focuses on lowering

control transfer latency—it assumes that the arguments

transferred by the cross-domain call are small enough to
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be copied from one domain to another. This paper con-

siders the complementary issue of increasing data transfer

throughput—we are interested in I/O intensive applications

that require significant amounts of data to be moved across

protection boundaries. Such applications include real-time

video, digital image retrieval, and accessing large scientific

data sets.

Focusing more specifically on network I/0, we observe

that on the one hand emerging network technology will

soon offer sustained data rates approaching one gigabit per

second to the end host, while on the other hand, the trend

towards microkernel-based operating systems leads to a

situation where the 1/0 data path may intersect multiple

protection domains. The challenge is to turn good net-

work bandwidth into good application-to-application band-

width, without compromising the OS structure. Since in

a microkernel-based system one might find device drivers,

network protocols, and application software all residing

in different protection domains, an important problem is

moving data across domain boundwies as efficiently as

possible. This task is made difficult by the limitations of

the memory architecture. most notably the CPU/memory

bandwidth. As network bandwidth approaches memory

bandwidth, copying data from one domain to another sim-

ply cannot keep up with improved network performance

[15,7].

This paper introduces a high-bandwidth cross-domain

transfer and buffer management facility, called fast buffers

(fbufs), and shows how it can be optimized to support data

that originates and/or terminates at an 1/0 device, poten-

tially traversing multiple protection domains. Fbufs com-

bine two well-known techniques for transferring data across

protection domains: page remapping and shared memory.

It is equally correct to view fbufs as using shared memory

(where page remapping is used to dynamically change the
set of pages shared among a set of domains), or using page

remapping (where pages that have been mapped into a set

of domains are cached for use by future transfers).
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Figure 1: Layers Distributed over Multiple Protection Domains

2 Background

This section outlines the requirements for a buffer man-

agement and cross-domain data transfer facility by exam-

ining the relevant characteristics of network 1/0. It also

reviews previous work in light of these requirements. The

discussion appeals to the reader’s intuitive notion of a data

buffer; Section 3 defines a specific representation.

2.1 Characterizing Network I/O

We are interested in the situation where 1/0 data is pro-

cessed by a sequence of software layers—device drivers,

network protocols, and application programs-that may

be distributed across multiple protection domains. Fig-

ure 1 depicts this abstractly: data is generated by a source

module, passed through one or more softwzwe layers, and

consumed by a sink module. As the data is passed from

one module to another, it traverses a sequence of protection

domains. The data source is said to run in the originator

domain; and the other modules run in receiver domains.
Note that although this section considers the general

case of multiple protection domains, the discussion applies

equally well to systems in which only two domains are

involved: kernel and user. Section 4 shows how different

transfer mechanisms perform in the two domain case, and

Section 5.1 discusses the larger issue of how many domains
one might expect in practice.

2.1.1 Networks and Buffers

On the input side, the network adapter delivers data to

the host at the granularity of a protocol data unit (PDU),
where each arriving PDU is received into a buffer. 1 Higher

1PDU size may be larger than the network packet size, as

is likely in an ATM network. PDUS are the appropriate unit to

level protocols may reassemble a collection of PDUS into

a larger application data unit (ADU). Thus, an incoming

ADU is typically stored as a sequence of non-contiguous,

PDU-sized buffers.

On the output side, an ADU is often stored in a single

contiguous buffer, and then fragmented into a set of smaller

PDUS by lower level protocols. Fragmentation need not

disturb the original buffer holding the ADU; each fragment

can be represented by an offsetilength into the original

buffer.

PDU sizes are network dependent, while ADU sizes are

applications dependent. Control overhead imposes a prac-

tical lower bound on both. For example, a 1 Gbps link

with 4 KByte PDUS results in more than 30,500 PDUS per

second. On the other hand, network latency concerns place

an upper bound on PDU size, particularly when PDUS are

sent over the network without further fragmentation. Sim-

ilarly, ADU size is limited by application-specific latency

requirements, and by physical memory limitations.

2.1.2 Allocating Buffers

At the time a buffer is allocated, we assume it is known

that the buffer is to be used for I/O data. This is certainly

the case for a device driver that allocates buffers to hold

incoming packets, and it is a reasonable expectation to

place on application programs. Note that it is not strictly
necessary for the application to know that the buffer will

eventually find its way to an 1/0 device, but only that it

might transfer the buffer to another domain.

The situation depicted in Figure 1 is oversimplified in

that it implies that there exists a single, linear path through

the 1/0 subsystem. In general, data may traverse a number

of different paths through the software layers, and as a con-

consider becausethey are what the end hosts sees.
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sequence, visit different sequences of protection domains.

We call such a path an 1/0 data path, and say that a buffer

belongs to a particular 1/0 data path. We further assume

that all data that originates from (terminates at) a particular

communication endpoint (e.g., a socket or port) travels the

same 1/0 data path. An application can therefore easily

identify the 1/0 data path of a buffer at the time of alloca-

tion by referring to the communication endpoint it intends

to use. In the case of incoming PDUS, the 1/0 data path to

which the PDU (buffer) belongs can often be determined,

either by the network adaptor (e.g., by interpreting an ATM

cell’s VCI and/or adaptation layer info in hardware) or by

having the device driver inspect the headers of the arriving

PDU prior to the transfer of the PDU into main memory.

Locality in network communication [14] implies that

if there is traffic on a particular 1/0 data path, then more

traffic can be expected on the same path in the near future.

Consequently, it is likely that a buffer that was used for a

particular 1/0 data path can be reused soon for that same

data path.

2.1.3 Accessing Buffers

We now consider how buffers are accessed by the various

software layers along the 1/0 data path. The layer that

allocates a buffer initially writes to it. For example, a

device driver allocates a buffer to hold an incoming PDU,

while an application program fills a newly allocated buffer

with data to be transmitted. Subsequent layers require

only read access to the buffer. An intermediate layer that

needs to modify the data in the buffer instead allocates and

writes to a new buffer. Similarly, an intermediate layer that

prepends or appends new data to a buffer—e.g., a protocol

that attaches a header—instead allocates a new buffer and

logically concatenates it to the original buffer using the

same buffer aggregation mechanism that is used to join a

set of PDUS into a reassembled ADU.

We therefore restrict I/O buffers to be immutable—they

are created with an initial data content and may not be

subsequently changed. The immutability of buffers implies

that the originator domain needs write permission for a

newly allocated buffer, but it does not need write access

after transferring the buffer. Receiver domains need read

access to buffers that are passed to them.

Buffers can be transferred from one layer to another

with either move or copy semantics. Move semantics are

sufficient when the passing layer has no future need for

the buffer’s data. Copy semantics are required when the

passing layer needs to retain access to the buffer, for exam-

ple, because it may need to retransmit it sometime in the
future. Note that there are no performance advantages in

providing move rather than copy semantics since buffers

are immutable. This is because with immutable buffers,

copy semantics can be achieved by simply sharing buffers.

Consider the case where a buffer is passed out of the

originator domain. As described above, there is no reason

for a correct and well behaved originator to write to the

buffer after the transfer. However, protection and security

needs generally require that the buffer/transfer facility en-

force the buffer’s immutability. This is done by reducing the

originator’s access permissions to read only. Suppose the

system does not enforce immutability; such a buffer is said

to be volatile. If the originator is a trusted domain—e.g.,

the kernel that allocated a buffer for an incoming PDU—

then the buffer’s immutability clearly need not be enforced.

If the originator of the buffer is not trusted, then it is most

likely an application that generated the data. A receiver

of such a buffer could fail (crash) while interpreting the

data if the buffer is modified by a malicious or faulty ap-

plication. Note, however, that layers of the 1/0 subsystem

generally do not interpret outgoing data. Thus, an applica-

tion would merely interfere with its own output operation

by modifying the buffer asynchronously. The result may

be no different if the application had put incorrect data in

the buffer to begin with.

There are thus two approaches. One is to enforce im-
mutability of a buffer; i.e. the originator loses its write

access to the buffer upon transferring it to another domain.

The second is to simply assume that the buffer is volatile,

in which case a receiver that wishes to interpret the data

must first request that the system raise the protection on

the buffer in the originator domain. This is a no-op if the

originator is a trusted domain.

Finally, consider the issue of how long a particular do-

main might keep a reference to a buffer. Since a buffer

can be passed to an untrusted application, and this domain

may retain its reference for an arbitrarily long time, it is

necessary that buffers be pageable. In other words, the

cross-domain transfer facility must operate on pageable,

rather than wired (pinned-down) buffers.

2.1.4 Summary of Requirements

In summary, by examining how buffers are used by the

network subsystem, we are able to identify the following set

of requirements on the buffer managementitran sfer system,

or conversely, a set of restrictions that can reasonably be

placed on the users of the transfer facility.

The transfer facility should support both single, con-

tiguous buffers, and non-contiguous aggregates of

buffers.

It is reasonable to require the use of a special buffer

allocator for 1/0 data.
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At the time of allocation, the 1/0 data path that a

buffer will traverse is often known. For such cases,

the transfer facility can employ a data path-specific

allocator.

The I/O subsystem can be designed to use only im-

mutable buffers. Consequently, providing only copy

semantics is reasonable.

The transfer facility can support two mechanisms to

protect against asynchronous modification of a buffer

by the originator domain: eagerly enforce immutabil-

ity by raising the protection on a buffer when the

originator transfers it, or lazily raise the protection

upon request by a receiver.

Buffers should be pageable.

Section 3 gives the design of a cross-domain transfer facility

that supports (exploits) these requirements (restrictions).

2.2 Related Work

The unacceptable cost of copying data from one buffer

to another is widely recognized. This subsection reviews

literature that addresses this problem.

2.2,1 Page Remapping

Several operating systems provide various forms of virtual

memory (VM) support for transferring data from one do-

main to another. For example, the V kernel and DASH

[4, 19] support page remapping, while Accent and Mach

support copy-on-write (COW) [8, 1]. Page remapping has

move rather than copy semantics, which limits its utility

to situations where the sender needs no further access to

the transferred data. Copy-on-write has copy semantics,

but it can only avoid physical copying when the data is not

written by either the sender or the receiver after the transfer.

Both techniques require careful implementation to

achieve good performance. The time it takes to switch to

supervisor mode, acquire necessary locks to VM data struc-

tures, change VM mappings—perhaps at several levels—

for each page, perform TLB/cache consistency actions, and

return to user mode poses a limit to the achievable perfor-

mance. We consider two of the more highly tuned imple-

mentations in more detail.

First, Tzou and Anderson evaluate the remap facility

in the DASH operating system [19]. The paper reports

an incremental overhead of 208psecslpage on a Sun 3/50.

However, because it measures a ping-pong test case—the
same page is remapped back and forth between a pair of

processes—it does not include the cost of allocating and

deallocating pages. In practice, high-bandwidth data flows

in one direction through an I/O data path, requiring the

source to continually allocate new buffers and the sink to

deallocate them. The authors also fail to consider the cost

of clearing (e.g., filling with zeros) newly allocated pages,

which may be required for security reasons.

So as to update the Tzou/Anderson results, and to quan-

tify the impact of these limitations, we have implemented

a similar remap facility on a modern machine (DecStation

5000/200). Our measurements show that it is possible to

achieve an incremental overhead of 22psecs/page in the

ping-pong test, but that one would expect an incremen-

tal overhead of somewhere between 42 and 99psecslpage

when considering the costs of allocating, clearing, and deal-

locating buffers, depending on what percentage of each

page needed to be cleared.

The improvement from 208psecs/page (Sun 3/50) to

22psecs/page (Dee 5000/200) might be taken as evidence

that page remapping will continue to become faster at the

same rate as processors become faster. We doubt that this

extrapolation is correct. Of the 22#secs required to remap

another page, we found that the CPU was stalled waiting for

cache fills approximately half of the time. The operation is

likely to become more memory bound as the gap between

CPU and memory speeds widens.

Second, the Peregrine RPC system [11] reduces RPC

latency by remapping a single kernel page containing the

request packet into the server’s address space, to serve as

the server thread’s runtime stack. The authors report a cost

of only 4psecs for this operation on a Sun 3/60. We suspect

the reason for this surprisingly low number is that Peregrine

can remap a page merely by modifying the corresponding

page table entry. This is because in the V system—upon

which Peregrine is based—all VM state is encoded only in

the Sun’s physical page tables. Portability concerns have

caused virtually all modern operating systems to employ a

two-level virtual memory system. In these systems, map-

ping changes require the modification of both low-level,

machine dependent page tables, and high-level, machine-

independent data structures. Moreover, unlike the Sun

3/60, most modern architectures (including the DecStation)

require the flushing of the corresponding TLB entries after

a change of mappings. Both DASH and the fbuf mech-

anism described in the next section are implemented in a

two-level VM system.

Peregrine overlaps the receipt of one PDU from the Eth-

ernet with copying the previous PDU across the user/kernel

boundary. However, this strategy does not scale to either

high-speed networks, or microkernel-based systems. As

network bandwidth approaches memory bandwidth, con-

tention for main memory no longer allows concurrent re-

ception and copying—possibly more than once—at net-

work speeds.
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2.2,2 Shared Memory 3.1 Basic Mechanism

Another approach is to statically share virtual memory

among two or more domains, and to use this memory to

transfer data. For example, the DEC Firefly RPC facil-

ity uses a pool of buffers that is globally and permanently

shared among all domains [16]. Since all domains have

read and write access permissions to the entire pool, protec-

tion and security are compromised. Data is copied between

the shared buffer pool and an application’s private memory.

As another example, LRPC [2] uses argument stacks that

are pairwise shared between communicating protection do-

mains. Arguments must generally be copied into and out

of the argument stack.

Both techniques reduce the number of copies required,

rather than eliminating copying. This is sufficient to im-

prove the latency of RPC calls that carry relatively small

amounts of data, and to preserve the relatively low band-

width of Ethernet LANs. The fbuf mechanism has the dif-

ferent goal of preserving the bandwidth afforded by high-

speed networks at the user level. Fbufs complement a

low-latency RPC mechanism.

The bottom line is that using statically shared memory

to eliminate all copying poses problems: globally shared

memory compromises security, pairwise shared memory

requires copying when data is either not immediately con-

sumed or is forwared to a third domain, and group-wise

shared memory requires that the data path of a buffer is al-

ways known at the time of allocation. All forms of shared

memory may compromise protection between the sharing

domains.

Several recent systems attempt to avoid data copying

by transferring data directly between UNIX application

buffers and network interface [5, 17]. This approach works

when data is accesses only in a single application domain.

A substantial amount of memory may be required in the

network adapter when interfacing to high-bandwidth, high-

latency networks. Moreover, this memory is a limited re-

source dedicated to network buffering. With fbufs, on the

other hand, network data is buffered in main memory; the

network subsystem can share physical memory dynami-

cally with other subsystems, applications and file caches.

3 Design

This section describes the design of an integrated buffer

and data transfer mechanism. It begins by introducing a

basic mechanism, and then evolves the design with a series

of optimization. Some of the optimization can be applied
independently, giving rise to a set of implementations with

different restrictions and costs.

1/0 data is stored in buffers called fbuf~, each of which

consists of one or more contiguous virtual memory pages.

A protection domain gains access to an fbuf either by ex-

plicitly allocating the fbuf, or implicitly by receiving the

fbuf via IPC. In the former case, the domain is called the

originator of the fbufi in the latter case, the domain is a

receiver of the fbuf.

An abstract data type can be layered on top of fbufs

to support buffer aggregation. Such abstractions typically

provide operations to logically join one or more buffers into

an aggregate, split an aggregate into separate buffers, clip

data from one end of an aggregate, and so on. Examples of

such aggregation abstractions include x-kernel messages

[10], and BSD Unix mbufs [12]. For the purpose of the

following discussion, we refer to such an abstraction as an

aggregate object, and we use the z-kernel’s directed acyclic

graph (DAG) representation depicted in Figure 2.
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Figure 2: Aggregate Object

A virtual page remapping facility logically copies or

moves a set of virtual memory pages between protection

domains by modifying virtual memory mappings. We use

a conventional remap facility with copy semantics as the

baseline for our design. The use of such a facility to transfer

an aggregate object involves the following steps.

1. Allocate an Aggregate Object (Originator)

(a)

(b)

(c)

Find and allocate a free virtual address range in

the originator (per-fbuf)

Allocate physical memory pages and clear con-

tents (per-page)

Update physical page tables (per-page)
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2. Send Aggregate Object (Originator)

(a) Generate a list of fbufs from the aggregate ob-

ject (per-fbuf)

(b) Raise protection in originator (read only or no

access) (per-fbuf)

(c) Update physical page tables, ensure TLB/cache

consistency (per-page)

3. Receive Aggregate Object (Receiver)

(a)

(b)

(c)

Find and reserve a free virtual address range in

the receiver (per-fbuf)

Update physical page tables (per-page)

Construct an aggregate object from the list of

fbufs (per-fbuf)

4. Free an Aggregate Object (Originator, Receiver)

(a) Deallocate virtual address range (per-fbuf)

(b) Update physical page table, ensure TLB/cache

consistency (per-page)

(c) Free physical memory pages if there are no

more references (per-page)

Note that a receiver that forwards an aggregate object to

another domain would also perform the actions in step 2.

Even in a careful implementation, these actions can re-

sult in substantial overhead. For example, a simple data

path with two domain crossings requires six physical page

table updates for each page, three of which may require

TLB/cache consistency actions. Moreover, each allocated

physical page may need to be cleared-i.e., filled with

zeroes—for security reasons.

3.2 Optimization

The following set of optimization are designed to elim-

inate the per-page and per-fbuf costs associated with the

base remapping mechanism.

3.2.1 Restricted Dynamic Read Sharing

The first optimization places two functional restrictions on

data transfer. First, only pages from a limited range of vir-
tual addresses can be remapped. This address range, called

theflu~region, is globally shared among all domains. Note

that sharing of an address range does not imply unrestricted

access to the memory that is mapped into that range. Sec-

ond, write accesses to an fbuf by either a receiver, or the
originator while a receiver is holding a reference to the

fbuf, are illegal and result in a memory access violation

exception.

The first restriction implies that an fbuf is mapped at the

same virtual address in the originator and all receivers. This

eliminates the need for action (3a) during transfer. Note

that the DASH remap facility uses a similar optimization.

Shared mapping at the same virtual address also precludes

virtual address aliasing, which simplifies and speeds up the

management of virtually tagged caches, in machines that

employ such caches. The second restriction eliminates the

need for a copy-on-write mechanism. These restrictions

require a special buffer allocator and immutable buffers.

3,2.2 Fbuf Caching

This optimization takes advantage of locality in interpro-

cess communication. Specifically, we exploit the fact that

once a PDU or ADU has followed a certain data path—i.e.,

visited a certain sequence of protection domains-more

PDUS or ADUs can be expected to travel the same path

soon.

Consider what happens when a PDU arrives from the

network. An fbuf is allocated in the kernel, filled, and then

transferred one or more times until the data is consumed by

the destination domain. At this point, the fbuf is mapped

with read only permission into the set of domains that par-

ticipate in an I/O data path. Ordinarily, the fbuf would now

be unmapped from these domains, and the physical pages

returned to a free memory pool. Instead, write permissions

are returned to the originator, and the fbuf is placed on a

free list associated with the I/O data path. When another

packet arrives for the same data path, the fbuf can be reused.

In this case, no clearing of the buffers is required, and the

appropriate mappings already exist.

Fbuf caching eliminates actions (1a-c), (2a-b), and (4a-

C) in the common case where fbufs can be reused. It reduces

the number of page table updates required to two, irrespec-

tive of the number of transfers. Moreover, it eliminates

expensive clearing of pages, and increases locality of ref-

erence at the level of TLB, cache, and main memory. The

optimization requires that the originator is able to determine

the 1/0 data path at the time of fbuf allocation.

3.2.3 Integrated Buffer Management/Transfer

Recall that the aggregate object abstraction is layered on

top of fbufs. However, the transfer facility described up
to this point transfers fbufs, not aggregate objects across

protection boundaries. That is, an aggregate object has to

be translated into a list of fbufs in the sending domain (2a),

this list is then passed to the kernel to effect a transfer, and

the aggregate object is rebuilt on the receiving side (3c).
Note that in this case, any internal data structures main-

tained by the aggregate object (e.g., interior DAG nodes)

are stored in memory that is private to each domain. One
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consequence of this design is that the tlmfs can be used

to transfer any data across a domain boundary, and that a

different representation for aggregated data can be used on

either side of the boundary.

Consider now an optimization that incorporates knowl-

edge about the aggregate object into the transfer facility,

thereby eliminating steps (2a) and (3c). The optimiza-

tion integrates buffer management and cross-domain data

transfer facility by placing the entire aggregate object into

t%ufs. Since the fbuf region is mapped at the same vir-

tual address in all domains, no internal pointer translations

are required. During a send operation, a reference to the

root node of the aggregate object is passed to the kernel.

The kernel inspects the aggregate and transfers all fbufs

in which reachable nodes reside, unless shared mappings

already exist. The receiving domain receives a reference to

the root node of the aggregate object. Steps (2a) and (3c)

have therefore been eliminated.

3.2.4 Volatile fbufs

Under the previous optimization, the transport of an fbuf

from the originator to a receiver still requires two physical

page table updates per page: one to remove write permis-

sion from the originator when the fbuf is transferred, and

one to return write permissions to the originator after the

fbuf was freed by all the receivers.

The need for removing write permissions from the orig-

inator can be eliminated in many cases by defining fbttfs to

be volatile by default. That is, a receiver must assume that

the contents of a received fbttf may change asynchronously

unless it explicitly requests that the fbuf be secured, that

is, write permissions are removed from the originator. As

argued in Section 2.1.3, removing write permissions is un-

necessary in many cases.

When the volatile fbttf optimization is applied in con-

junction with integrated buffer management, an additional

problem arises. Since the aggregate object (e.g., a DAG)

is stored in fbufs, and a receiving domain must traverse the

DAG to access the data, the receiver may be vulnerable

to asynchronous changes of the DAG. For example, a bad

pointer could cause a protocol in the kernel domain to fail

while traversing the DAG in order to compute a checksum.

The problem is solved in the following way. First, re-

ceivers verify that DAG pointers reference locations within

the fbuf region (this involves a simple range check). Sec-

ond, receivers check for cycles during DAG traversals to

avoid infinite loops. Third, read accesses by a receiver to

an address within the fbuf region for which the receiver has

no permissions are handled as follows. The VM system

maps a page at the appropriate location in the offending
domain, initializes the page with a leaf node that contains

no data, and allows the read to complete. Thus, invalid

DAG references appear to the receiver as the absence of

data.

3.2.5 Summary

The optimization described above eliminate all per-page

and per-fbuf costs associated with cross-domain data trans-

fer in the common case—when the data path can be iden-

tified at fbuf allocation time, an appropriate fbttf is already

cached, and when removing write permissions from the

originator is unnecessary. Moreover, in the common case,

no kernel involvement is required during cross-domain data

transfer. Our facility is therefore well suited for use with

user-level IPC facilities such as URPC [3], and other highly

optimized IPC mechanisms such as MMS [9].

3.3 Implementation Issues

A two-level allocation scheme with per-domain allo-

cators ensures that most fbuf allocations can be satisfied

without kernel involvement. A range of virtual addresses,

the fbuf region, is reserved in each protection domain, in-

cluding the kernel. Upon request, the kernel hands out

ownership of fixed sized chunks of the fbttf region to user-

Ievel protection domains. The fbuf region is pageable like

ordinary virtual memory, with physical memory allocated

lazily upon access. Fbuf allocation requests are fielded by

jbuf allocators locally in each domain. These allocators

satisfy their space needs by requesting chunks from the

kernel as needed. Deallocated fbufs are placed on the ap-

propriate allocator’s free list, which is maintained in LIFO

order.

Since fbufs are pageable, the amount of physical mem-

ory allocated to fbufs depends on the level of I/O traffic

compared to other system activity. Similarly, the amount

of physical memory allocated to a particular data path’s

fbttfs is determined by its recent traffic. The LIFO order-

ing ensures that fbufs at the front of the free list are most

likely to have physical memory mapped to them. When the

kernel reclaims the physical memory of an fbuf that is on a

free list, it discards the fbttf’s contents; it does not have to

page it out to secondary storage.

When a message is deallocated and the corresponding

fbufs are owned by a different domain, the reference is put

on a list of deallocated external references. When an RPC

call from the owning domain occurs, the reply message

is used to carry deallocation notices from this list. When

too many freed references have accumulated, an explicit

message must be sent notifying the owning domain of the

deallocation. In practice, it is rarely necessary to send

additional messages for the purpose of deallocation.
When a domain terminates, it may hold references to

fbufs it has received. In the case of an abnormal termina-
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tion, the domain may not properly relinquish those refer-

ences. Note, however, that the domain is part of m 1/0

data path. Thus, its termination will cause the destruction

of a communication endpoint, which will in turn cause the

deallocation of all associated fbufs. A terminating domain

may also be the originator of fbufs for which other domains

hold references. The kernel will retain chunks of the fbuf

region owned by the terminating domain until all external

references are relinquished. An incorrect or malicious do-

main may fail to deallocate fbufs it receives. This would

eventually cause the exhaustion of the fbuf region’s virtual

address range. To prevent this, the kernel limits the num-

ber of chunks that can be allocated to any data path-specific

fbuf allocator.

4 Performance

This section reports on several experiments designed

to evaluate the performance of fbufs. The software plat-

form used in these experiments consists of CMU’S Mach

3.0 microkernel (MK74) [1], augmented with a network

subsystem based on the University of Arizona’s x-kernel

(Version 3.2) [10]. The hardware platform consists of a

pair of DecStation 5000/200 workstations (25MHz MIPS

R3000), each of which was attached to a prototype ATM

network interface board, called Osiris, designed by Bell-

core for the Aurora Gigabit testbed [6]. The Osiris boards

were connected by a null modem, and support a link speed

of 622Mbps.

The z-kernel based network subsystem consists of a

protocol graph that can span multiple protection domains,

including the Mach microkernel. Proxy objects are used

in the x-kernel to forward cross-domain invocations using

Mach IPC. The x-kernel supports a message abstract data

type similar to the one shown in Figure 2. The message

type is immutable—instances are created with an initial

content that cannot be subsequently changed. 2 All proto-

cols and device drivers deal with network data in terms of

the message abstraction,

Incorporating fbufs into this environment required the

following work: the Mach microkernel was modified to

provide virtual memory support for fbufs, z-kernel mes-

sages were modified to use fbufs rather than malloc’ ed
buffers, proxy objects were upgraded to use the fbuf data

transfer facility, and an Osiris device driver was written

that uses fbuf based z-kernel messages. Several new

approaches—described in a forthcoming paper—were re-

quired to reduce interrupt and other overhead in the driver.

2This is true as long as protocols access the message only
through the operations exported by the message abstraction.

The first experiment quantities the performance of fbuf

transfers across a single protection boundary, A test pro-

tocol in the originator domain repeatedly allocates an x-

kernel message, writes one word in each VM page of the

associated fbuf. and passes the message to a dummy proto-

col in the receiver domain. The dummy protocol touches

(reads) one word in each page of the received message,

deallocates the message, and returns. Table 1 shows the

incremental per-page costs—independent of IPC latency—

and the calculated asymptotic bandwidths.

There are four things to notice about these num-

bers. First, the cached/volatile case performs an order

of magnitude better than the uncached or non-volatile

cases. It also performs an order of magnitude better

than the TzoulAnderson page remapping mechanism re-

implemented on the same hardware. Second, the per-page

overhead of cached/volatile fbufs is due to TLB misses

caused by the accesses in the test and dummy protocols.

TLB misses are handled in software in the MIPS architec-

ture. Third, the cost for clearing pages in the uncached case

is not included in the table. Filling a page wi&h zeros takes

57psecs on the DecStation. Fourth, the relatively high per-

page overhead for the Mach COW facility is partly due

to its lazy update strategy for physical page tables, which

causes two page faults for each transfer.

The second experiment measures throughput as a func-

tion of message size. The results are shown in Figure 3.

Unlike Table 1, the throughput rates shown for small mes-

sages in these graphs are strongly influenced by the control

transfer latency of the IPC mechanism; it is not intrinsic

to the buffer transfer facility. As before, Mach’s native

transfer facility has been included for comparison; it uses

data copying for message sizes of less than 2KBytes, and

COW otherwise.

For small messages—under 4KI-the performance

break down is as follows. For message sizes under 2KB,

Mach’s native data transfer facility is slightly faster than un-

cached or non-volatile fbufs; this is due to the latency asso-

ciated with invoking the virtual memory system, which we

have not optimized in our current implementation. How-

ever, cached/volatile fbufs outperform Mach’s transfer fa-

cility even for very small message sizes. Consequently,

no special-casing is necessary to efficiently transfer small
messages.

The third experiment demonstrates the impact of fbufs

on network throughput by taking protocol processing over-

head into account. It is also valuable because it is a macro

experiment; i.e., it more accurately reflects the effects of

the processor’s instruction and data caches. A test proto-

col in the originator domain repeatedly creates an z-kernel

message, and sends it using a UDP/IP protocol stack that
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I I incremental I asymptotic I

per-page cost (psecs) throughput (Mbps)

fbufs, cached/volatile 3 10,922

fbufs, volatile 21 1,560

fbufs, cached 29 1;130

fbufs 37 886

Mach COW 144 228

I copy I 316 I 104 [

Table 1: Incremental per-page costs

Throughput in Mbps
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Figure 3: Throughput of a single domain boundary crossing

resides in a network server domain. 3 1P fragments large

messages into PDUS of 4KBytes. A local loopback proto-

col is configured below 1P; it turns PDU’S around and sends

them back up the protocol stack. Finally, 1P reassembles

the message on the way back up, and sends it to a receiver

domain that contains the dummy protocol from the first ex-

periment. The use of a loopback protocol rather than a real

device driver simulates an infinitely fast network. Thus, the

experiment ignores the effects of limited 1/0 bus bandwidth

and network bandwidth in currently available commercial

hardware.

For comparison purposes, we have performed the same

experiment with all components configured into a single

protection domain, rather than three domains. By compar-

ing the results we can quantify the impact of domain bound-

aries on network throughput. Figure 4 shows the measured

throughput in each case. The anomaly in the single domain

3UDP and 1P have been slightly modified to support messages

larger than 64KBytes.

graph is caused by a fixed fragmentation overhead that sets

in for messages larger than 4KB ytes. This cost is gradually

amortized for messages much larger than 4KB ytes. More-

over, this peak does not occur in the multiple domain cases

due to the dominance of cross-domain latency for 4KByte

transfers.

There are four things to observe about these results.

First, the use of cached fbufs leads to a more than twofold

improvement in throughput over uncached fbufs for the

entire range of message sizes. This is significant since

the performance of uncached fbufs is competitive with the

fastest page remapping schemes. Second, we considered

only a single domain crossing in either direction; this cor-

responds to the structure of a monolithic system. In a

microkernel-based system, it is possible that additional do-

main crossings would occur. Third, for message sizes of

64 KBytes and larger, the cached fbuf throughput is more

than 90% of the throughput for a data path that involves no

domain boundary crossings. This is of practical importance
since large messages are common with high-bandwidth ap-
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Figure 4: Throughput of a UDP/IP local loopback test

placations. Fourth, because the test is run in loopback mode,

the throughput achieved is roughly half of what one would

expect between two DecStations connected by an infinitely

fast network.

A final experiment measures end-to-end throughput of

UDP/IP between two DecStations using a null modem con-

nection of the Osiris network interface boards. The protocol

suite is identical to that used in the previous experiment,

except that the local loopback protocol below 1P is replaced

with a driver for the Osiris board, and 1P’s PDU size was

set to 16KBytes. The test protocol uses a sliding window

to facilitate flow control.

Figure 5 shows the measured end-to-end throughput

achieved with cachedlvolatile fbufs as a function of the

message size. In the kernel-kernel case, the entire proto-

col stack, including the test protocol, is configured in the

kernel. This case serves as a baseline for evaluating the

impact of domain boundary crossings on throughput. The

user-user case involves a kernelluser boundary crossing on

each host. In the user-netserver-user case, UDP is config-

ured in a separate user level server domain, necessitating

both a userluser and a kernelluser boundary crossing as part

of the data path on each host.

We make the following observations. First, the maximal

throughput achieved is 285 Mbps, or 55% of the net band-

width supported by the network link4. This limitation is

due to the capacity of the DecStation’s TurboChannel bus,

not software overheads. The TurboChannel has a peak
]’

4The net bandwidth of 516 Mbps is derived from the link

bandwidth (622 Mbps) minus ATM cell overhead.

bandwidth of 800 Mbps, but DMA startup latencies reduce

the effective throughput. The Osiris board currently initi-

ates a DMA transfer for each ATM cell payload, limiting

the maximal throughput to 367 Mbps. Bus contention due

to CPU/memory traffic further reduces the attainable 1/0

throughput to 285 Mbps.

Second, domain crossings have virtually no effect on

end-to-end throughput for large messages (> 256KB) when

cached/volatile fbufs are used. For medium sized mes-

sages (8–64KB), Mach IPC Iatencies result in a significant

throughput penalty per domain crossing. The throughput

for small messages (< 8KB) is mainly limited by driver and

protocol processing overheads.

For medium sized messages, the throughput penalty for

a second domain crossing is much larger than the penalty

for the first crossing. The difference is too large to be ex-

plained by the different latency of kernehrser and user/user

crossings. We attribute this penalty to the exhaustion of

cache and TLB when a third domain is added to the data

path. Because our version of Mach/Unix does not support

shared libraries, program text that implements the z-kernel

infrastructure is duplicated in each domain. This dupli-

cation reduces instruction access locality and reduces hit
rates in both TLB and instruction cache. The use of shared

libraries should help mitigate this effect.

Figure 6 shows the measured end-to-end through-

put when uncachedlnon-volatile fbufs are used.5 As

5The use of non-volatile fbufs has a cost only in the transmit-

ting host; this is because the kernel is tbe originator of all fbufs

in the receiving host. For similar reasons, uncached fbufs incur
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Figure5: UDP/IPend-to-end throughput using cached, volatile fiufs

in the loop-back experiment, the significance of the

uncached/non-volatile case is that it is comparable to the

best one can achieve with page remapping. The kernel-

kernel graph is once again included as a baseline for com-

parison. The maximal user-user throughput is 225 Mbps.

Thus, the use of uncached fbufs leads to a throughput degra-

dation of21 % when one boundary crossing occurs on each

host. The throughput achieved in the user-netserver-user

case is only marginally lower. The reason is that UDP—

which resides in the netserver domain—does not access the

message’s body. Thus, there is no need to ever map the cor-

responding pages into the netserver domain. Consequently,

the additional cost for using uncached fbufs in this case is

small.

Note that the maximal throughput achieved with un-

cached fbufs is CPU bound, while throughput is 1/0 bound

with cached fbufs. Thus, the throughput figure does not

fully reflect the benefit of using cached fbufs. In our test,

part of the benefit takes the form of a reduction of CPU

load. Specifically, the CPU load on the receiving host dur-

ing the reception of 1 MByte packets is 88% when cached

fbufs are used, while the CPU is saturated when uncached

fbufs are used6.

One can shift this effect by setting 1P’s PDU size to 32

KBytes, which cuts protocol processing overheads roughly

in half, thereby freeing CPU resources. In this case, the

additional cost only in the receiving host. In our test, the cost for

non-volatile t%ufs is hidden by the larger cost of uncached tbufs.
6CPU load was derived from the rate of a counter that is

updated by a low-priority background thread.

test becomes I/O bound even when uncached fbufs are

used, i.e., the uncached throughput approaches the cached

throughput for large messages. However, the CPU is still

saturated during the reception of 1 MByte messages with

uncached fbufs, while CPU load is only 559to when cached

fbufs are used. Here, the use of cached fbufs leads entirely

to a reduction of CPU load. On the other hand, a hypothet-

ical system with much higher 1/0 bandwidth would make

throughput CPU bound in both the cached and uncached

fbuf cases. The local loopback test (which simulates infi-

nite I/O bandwidth) has demonstrated that the use of cached

fbufs leads to a twofold improvement in throughput over

uncached fbufs in this case. Thus, on the DecStation, the

use of cached fbufs can reduce CPU load up to 4590 or in-

crease throughput by up to a factor of two, when compared

to uncached fbufs in the case where a single user-kernel

domain crossing occurs.

5 Discussion

5.1 How Many Domains?

An important question not yet answered is how many

domains a data path might intersect in practice. One the one

hand, there is a trend towards microkernel-based systems,

the motivation being that systems structured in this way are

easier to configure, extend, debug, and distribute. In a sys-

tem with a user-level networking server, there are at least
two domain crossings; a third-pa-ty window or multime-

dia server would add additional domain crossings. On the
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Figure6: UDP/IPend-to-end throughput using uncashed, non-volatile fiufs

other hand, even a microkernel-based system does not nec-

essarily imply that multiple domain crossings are required.

For example, recent work suggests that it impossible to

implement the TCPflP protocol suite using application li-

braries, thus requiring only a single user/kernel crossing in

the common case [13, 18].

There are three responses to this question. First, server-

based systems have undeniable advantages; it is a general

technique that makes it possible to transparently add new

services and entire OS personalities without requiring mod-

ificationh-ebuilding of the kernel and applications. It is

not yet clear whether the application-library approach can

achieve the same effect, or even generalize beyond TCP/IP.

Second, our work shows how to avoid the negative impact

of domain crossings on end-to-end throughput for large

messages. This is significant because many applications

that demand high throughput generate/consume large data

units. Such applications include continuous media, data

visualization, and scientific programs. For these applica-

tions, minimizing domain crossings may therefore not be

as critical. Third, as demonstrated in the previous section,

fbufs are also well suited for situations where only a single

kernelluser domain crossing occurs in the data path.

5.2 Characteristics of Network 110 Revisited

Fbufs gain efficiency part] y by placing certain restric-

tions on the use of 1/0 buffers, as described in Section
2. Nevertheless, fbufs can be transparently integrated with

network subsystems that are written to an immutable buffer

abstraction, as demonstrated by our z-kernel based imple-

mentation. Necessary modifications are restricted to soft-

ware modules that allocate buffers based on cached fbufs,

and modules that interpret I/O data.

In the interest of preserving user-level throughput, it is

necessary to transfer buffers between application programs

and operating system as efficiently as between modules of

the operating system. Unfortunately, the semantics of the

UNIX read/write interface make it difficult to use fbufs (or

any other VM based technique). This is because the UNIX

interface has copy semantics, and it allows the application

to specify an unaligned buffer address anywhere in the

its address space. We therefore propose the addition of

an interface for high-bandwidth 1/0 that uses immutable

buffer aggregates [7]. New high-bandwidth applications

can use this interface; existing applications can continue to

use the old interface, which requires copying.

The use of such an interface requires applications to use

an abstract data type that encapsulates buffer aggregates.

This implies that an application that reads input data must

be prepared to deal with the potentially non-contiguous

storage of buffers, unless it is willing to pay the performance

penalty of copying the data into contiguous storage. To

minimize inconvenience to application programmers, our
proposed interface supports a generator-like operation that

retrieves data from a buffer aggregate at the granuhu-ity of

an application-defined data unit, such as a structure or a

line of text. Copying only occurs when a data unit crosses

a buffer fragment boundary.

Since fbufs are immutable, data modifications require

the use of a new buffer. Within the network subsystem,

this does not incur a performance penalty, since data ma-
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nipulations are either applied to the entire data (presen-

tation conversions, encryption), or they are localized to

the header/traiIer, In the latter case, the buffer editing

functions—e.g., join, split, clip—on the aggregate object

can be used to logically concatenate a new header with the

remaining, unchanged buffer. The same is true for applica-

tion data manipulations, as long as manipulations on part of

the data are localized enough to warrant the small overhead

of buffer editing. We cannot imagine an application where

this is a problem.

Cached fbufs require that the 1/0 data path of an fbuf

be identified at the time the fbuf is allocated. In those

cases where the 1/0 data path cannot be determined, a

default allocator is used. This allocator returns uncached

fbufs, and as a consequence, VM map manipulations are

necessary for each domain transfer. The driver for the

Osiris network interface used in our experiments employs

the following strategy. The driver maintains queues of

preallocated cached fbufs for the 16 most recently used

data paths, plus a single queue of preallocated uncached

fbufs. The adapter board performs reassembly of incoming

PDUS from ATM cells by storing the cell payloads into

a buffer in main memory using DMA. When the adapter

board needs a new reassembly buffer, it checks to see if

there is a preallocated fbuf for the virtual circuit identifier

(VCI) of the incoming PDU. If not, it uses a buffer from

the queue of uncached fbufs.

Note that the use of cached fbufs requires a demulti-

plexing capability in the network adapter, or it must at least

permit the host CPU to inspect the packet header prior to

the transfer of data into main memory. While most low-

bandwidth (Ethernet) network adapters do not have this

capability, network adapters for high-speed networks are

still the subject of research. Two prototypes of such inter-

faces we are familiar with (the Osiris board, and the HP

Afterburner board [5]) do have adequate support.

5.3 Architectural Considerations

As observed in Section 5, the performance of cached

fbufs for large messages is limited by TLB miss handling

overhead.~ In many modern architectures (including the

MIPS), TLB entries are tagged with a domain identifier.

This organization penalizes sharing in a global address

space, since a separate TLB entry is required in each domain

for a particular shared page, even if the address mapping

and protection information are identical.

Several modern processors permit the use of a single

TLB entry for the mapping of several physical pages (HP-

PA, MIPS R4000). This facility can be used to reduce

70ur implementation already clusters DAG nodes to reduce

the number of pages occupied by a single fbuf aggregate.

the TLB overhead for large fbufs. However, the physical

pages mapped with a single TLB entry must be contiguous

in physical address. This requires a form of physical mem-

ory management currently not present in many operating

systems.

Choosing the size of the fbuf region involves a tradeoff.

The region must be large enough to accommodate the I/O

buffering needs of both the kernel and all user domains.

On the other hand, a large window reduces the size of the

private address spaces of kernel and user domains. The

trend towards machines with 64-bit wide virtual addresses

should make this less of an issue.

5.4 Relationship to Other VM Systems

This paper describes an integrated implementation of

fbufs based on modify inglextending the Mach kernel. We

now briefly discuss ways to layer fbufs on top of existing

VM systems. Note that in each case, kernel modifications

are still required to give in-kernel software modules (e.g.,

device drivers) access to the fbuf facility.

Several modern VM systems—e.g., those provided by

the Mach and Chorus microkernels—export an external

pager interface. This interface allows a user process to

determine the semantics of a virtual memory object that

can be mapped into other protection domains. We have

designed an fbuf implementation that uses a Mach external

pager and does not require modifications of the VM system.

In this implementation, an fbuf transfer that requires VM

mapping changes must involve the external pager, which

requires communication between the sender of the fbuf

and the pager, and subsequently between the pager and

the kernel. Consequently, the penalty for using uncached

andlor non-volatile fbufs is expected to be quite high.

A shared memory facility such that provided by System

V UNIX could presumably be used to implement fbufs.

However, it is unclear how the semantics for read accesses

to protected locations in the fbuf region (Section 3.2.4) can

be achieved. Also, many implementations of System V

shared memory have rather severe limitations with regard

to the number and size of shared memory segments.

6 Conclusions

This paper presents an integrated buffer manage-

menthransfer mechanism that is optimized for high-

bandwidth 1/0. The mechanism, called fbufs, exploits lo-

cality in 1/0 traffic to achieve high throughput without
compromising protection, security, or modularity. Fbufs

combine the page remapping technique with dynamically

mapped, group-wise shared virtual memory. In the worse
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case, it performs as well as the fastest page remapping fa-

cilities described in the literature. Moreover, it offers the

even better performance of shared memory in the common

case where the data path of a buffer is know at the time of

allocation. Fbufs do not compromise protection and secu-

rity. This is achieved through a combination of group-wise

sharing, read-only sharing, and by weakening the semantics

of buffer transfers (volatile buffers).

A micro experiment shows that fbufs offer an order of

magnitude better throughput than page remapping for a

single domain crossing. Macro experiments involving the

UDP/IP protocol stack show when cached/volatile fbufs

are used, domain crossings have virtually no impact on

end-to-end throughput for large messages.
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