
Discriminative Classifiers 

  



Discriminative and generative 
methods for bags of features 

Zebra 

Non-zebra 

Slides by Svetlana Lazebnik, adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba 



Image classification 
• Given the bag-of-features representations of 

images from different classes, how do we 
learn a model for distinguishing them? 



Discriminative methods 
• Learn a decision rule (classifier) assigning 

bag-of-features representations of images 
to different classes 

Zebra 

Non-zebra 

Decision 
boundary 



Classification 
• Assign input vector to one of two or more 

classes 
• Any decision rule divides input space into 

decision regions separated by decision 
boundaries 
 
 



Nearest Neighbor Classifier 

• Assign label of nearest training data point to each test data 
point  

Voronoi partitioning of feature space  
for 2-category 2-D and 3-D data 

from Duda et al. 

Source: D. Lowe 



• For a new point, find the k closest points from training data 
• Labels of the k points “vote” to classify 
• Works well provided there is lots of data and the 

distance function is good 

K-Nearest Neighbors 

k = 5 

Source: D. Lowe 



Functions for comparing histograms 

• L1 distance 
 
 

• χ2 distance 
 
 

• Quadratic distance (cross-bin) 
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Jan Puzicha, Yossi Rubner, Carlo Tomasi, Joachim M. Buhmann: Empirical Evaluation of 
Dissimilarity Measures for Color and Texture. ICCV 1999  
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Earth Mover’s Distance 
• Minimum-cost way of “moving mass” from 

locations {m1} to locations {m2} 
 

 
 
 

• Earth Mover’s Distance has the form 
 
 
 
 
where the flows fij are given by the solution of a 
transportation problem 

Y. Rubner, C. Tomasi, and L. Guibas: A Metric for Distributions with Applications to 
Image Databases. ICCV 1998  
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Linear classifiers 
• Find linear function (hyperplane) to separate 

positive and negative examples 

0:negative
0:positive

<+⋅
≥+⋅

b
b

ii

ii

wxx
wxx

Which hyperplane 
is best? 



Support vector machines 
• Find hyperplane that maximizes the margin 

between the positive and negative examples 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf�


Support vector machines 
• Find hyperplane that maximizes the margin 

between the positive and negative examples 
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Margin Support vectors 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  

Distance between point 
and hyperplane: ||||

||
w
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For support, vectors,  1±=+⋅ bi wx

Therefore, the margin is  2 / ||w||  

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf�


Finding the maximum margin hyperplane 
1. Maximize margin 2/||w|| 
2. Correctly classify all training data: 

 
 
 
 

Quadratic programming (QP): 
 

  Minimize 
 
 Subject to (yi xi·w + b) ≥ 1 
 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  
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Finding the maximum margin hyperplane 
• Solution: 

 

   
∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  

Support  
vector 

learned 
weight 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf�


Finding the maximum margin hyperplane 
• Solution: 

 

    b = yi – w·xi   for any support vector 
 

• Classification function (decision boundary): 
 
 

• Notice that it relies on an inner product between 
the test point x and the support vectors xi 

• Solving the optimization problem also involves 
computing the inner products xi · xj between all 
pairs of training points 

∑= i iii y xw α

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  
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• Datasets that are linearly separable work out great: 
 

 
 
 

 
 

 

• But what if the dataset is just too hard?  
 
 

• We can map it to a higher-dimensional space! 

0 x 

0 x 

0 x 

x2 

Nonlinear SVMs 

Slide credit: Andrew Moore 



Φ:  x → φ(x) 

Nonlinear SVMs 
• General idea: the original input space can 

always be mapped to some higher-dimensional 
feature space where the training set is 
separable: 
 

Slide credit: Andrew Moore 



Nonlinear SVMs 
• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 
function K such that 
 

         K(xi , xjj) = φ(xi ) · φ(xj) 
 

 (* to be valid, the kernel function must satisfy 
Mercer’s condition) 

• This gives a nonlinear decision boundary in the 
original feature space: 
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998  

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf�


Kernels for bags of features 
• Histogram intersection kernel: 

 
 
 

• Generalized Gaussian kernel: 
 
 
 

• D can be Euclidean distance, χ2 distance, 
Earth Mover’s Distance, etc. 
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for 
Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007 

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf�
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf�


Summary: SVMs for image classification 
1. Pick an image representation (in our case, bag 

of features) 
2. Pick a kernel function for that representation 
3. Compute the matrix of kernel values between 

every pair of training examples 
4. Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights 
5. At test time: compute kernel values for your test 

example and each support vector, and combine 
them with the learned weights to get the value of 
the decision function 



What about multi-class SVMs? 
• Unfortunately, there is no “definitive” multi-

class SVM formulation 
• In practice, we have to obtain a multi-class 

SVM by combining multiple two-class SVMs  
• One vs. others 

• Traning: learn an SVM for each class vs. the others 
• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value 

• One vs. one 
• Training: learn an SVM for each pair of classes 
• Testing: each learned SVM “votes” for a class to assign to 

the test example 

 



SVMs: Pros and cons 
• Pros 

• Many publicly available SVM packages: 
http://www.kernel-machines.org/software 

• Kernel-based framework is very powerful, flexible 
• SVMs work very well in practice, even with very small 

training sample sizes 
 

• Cons 
• No “direct” multi-class SVM, must combine two-class SVMs 
• Computation, memory  

– During training time, must compute matrix of kernel values for 
every pair of examples 

– Learning can take a very long time for large-scale problems 

http://www.kernel-machines.org/software�


Boosting 

Combine weak classifiers to yield a strong one 

Strong  
classifier 

Weak classifier 

Weight 
Feature 
vector 

Slides by Xu and Arun 



Toy Example (by Antonio Torralba) 

Weak learners from 
the family of lines 

h => p(error) = 0.5  it is at chance 

Each data point has 

a class label: 

 

wt =1 
and a weight: 

+1 (  ) 

-1 (  ) 
yt = 



Toy example 

This one seems to be the best 

Each data point has 

a class label: 

 

wt =1 
and a weight: 

+1 (  ) 

-1 (  ) 
yt = 

This is a ‘weak classifier’: It performs slightly better than chance. 



Toy example 

We set a new problem for which the previous weak classifier performs at chance again 

Each data point has 

a class label: 

 

wt     wt exp{-yt Ht} 

We update the weights: 

+1 (  ) 

-1 (  ) 
yt = 



Toy example 

We set a new problem for which the previous weak classifier performs at chance again 

Each data point has 

a class label: 
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Toy example 

We set a new problem for which the previous weak classifier performs at chance again 

Each data point has 

a class label: 

 

wt     wt exp{-yt Ht} 

We update the weights: 

+1 (  ) 

-1 (  ) 
yt = 



Toy example 

We set a new problem for which the previous weak classifier performs at chance again 

Each data point has 

a class label: 

 

wt     wt exp{-yt Ht} 

We update the weights: 

+1 (  ) 

-1 (  ) 
yt = 



Toy example 

The strong (non- linear) classifier is built as the combination of 
all the weak (linear) classifiers. 

f1 f2 

f3 

f4 



AdaBoost (Freund and Schapire) 



Procedure of Adaboost 



A myriad of weak detectors 
 
Yuille, Snow, Nitzbert, 1998 
Amit, Geman 1998 
Papageorgiou, Poggio, 2000 
Heisele, Serre, Poggio, 2001 
Agarwal, Awan, Roth, 2004 
Schneiderman, Kanade 2004  
Carmichael, Hebert 2004 
… 
 
 
 Slides by Antonio Torralba 



Weak detectors 

Textures of textures  
Tieu and Viola, CVPR 2000 

 

Every combination of three filters 
generates a different feature 

This gives thousands of features. Boosting selects a sparse subset, so computations 
on test time are very efficient. Boosting also avoids overfitting to some extend. 



Haar wavelets 

Haar filters and integral image 
Viola and Jones, ICCV 2001 

 
 

The average intensity in the 
block is computed with four 
sums independently of the 
block size. 



Haar wavelets 
Papageorgiou & Poggio (2000) 

Polynomial SVM 



Edges and chamfer distance 

Gavrila, Philomin, ICCV 1999 



Edge fragments 

Weak detector = k edge 
fragments and threshold. 
Chamfer distance uses 8 
orientation planes 

Opelt, Pinz, Zisserman, 
ECCV 2006 



Histograms of oriented gradients 

• Dalal & Trigs, 2006 

• Shape context 
Belongie, Malik, Puzicha, NIPS 2000 • SIFT, D. Lowe, ICCV 1999 
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