Discriminative Classifiers

Discriminative and generative methods for bags of features

Slides by Svetlana Lazebnik, adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Image classification

 Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

Discriminative methods

 Learn a decision rule (classifier) assigning bag-of-features representations of images to different classes

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

 \boldsymbol{X}_2

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

from Duda et al.

Voronoi partitioning of feature space for 2-category 2-D and 3-D data

K-Nearest Neighbors

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify
- Works well provided there is lots of data and the distance function is good

Functions for comparing histograms

• L1 distance $D(h_1, h_2) = \sum_{i=1}^{N} |h_1(i) - h_2(i)|$

•
$$\chi^2$$
 distance $D(h_1, h_2) = \sum_{i=1}^N \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)}$

• Quadratic distance (*cross-bin*)

$$D(h_1, h_2) = \sum_{i,j} A_{ij} (h_1(i) - h_2(j))^2$$

Jan Puzicha, Yossi Rubner, Carlo Tomasi, Joachim M. Buhmann: <u>Empirical Evaluation of</u> <u>Dissimilarity Measures for Color and Texture</u>. ICCV 1999

Earth Mover's Distance

• Minimum-cost way of "moving mass" from locations $\{m_1\}$ to locations $\{m_2\}$

• Earth Mover's Distance has the form

$$EMD(S_1, S_2) = \sum_{i,j} \frac{f_{ij} d(m_{1i}, m_{2j})}{f_{ij}}$$

where the flows f_{ij} are given by the solution of a *transportation problem*

Y. Rubner, C. Tomasi, and L. Guibas: A Metric for Distributions with Applications to Image Databases. ICCV 1998

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ Distance between point
and hyperplane: $||\mathbf{x}_i \cdot \mathbf{w} + b||$
 $|||\mathbf{w}||$ Therefore, the margin is $2 / ||\mathbf{w}||$

Finding the maximum margin hyperplane

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data:

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

 $\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1$

Quadratic programming (QP):

Minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

Subject to $(y_i \mathbf{x}_i \cdot \mathbf{w} + b) \ge 1$

Finding the maximum margin hyperplane

Finding the maximum margin hyperplane

- Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$ for any support vector
- Classification function (decision boundary):

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point *x* and the support vectors *x_i*
- Solving the optimization problem also involves computing the inner products *x_i* · *x_j* between all pairs of training points

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space!

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Slide credit: Andrew Moore

Nonlinear SVMs

 The kernel trick: instead of explicitly computing the lifting transformation φ(x), define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

(* to be valid, the kernel function must satisfy *Mercer's condition*)

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

Kernels for bags of features

• Histogram intersection kernel:

$$I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$$

• Generalized Gaussian kernel:

$$K(h_1, h_2) = \exp\left(-\frac{1}{A}D(h_1, h_2)^2\right)$$

• *D* can be Euclidean distance, χ^2 distance, Earth Mover's Distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, <u>Local Features and Kernels for</u> <u>Classifcation of Texture and Object Categories: A Comprehensive Study</u>, IJCV 2007

Summary: SVMs for image classification

- 1. Pick an image representation (in our case, bag of features)
- 2. Pick a kernel function for that representation
- 3. Compute the matrix of kernel values between every pair of training examples
- 4. Feed the kernel matrix into your favorite SVM solver to obtain support vectors and weights
- 5. At test time: compute kernel values for your test example and each support vector, and combine them with the learned weights to get the value of the decision function

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multiclass SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
- One vs. others
 - Traning: learn an SVM for each class vs. the others
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - Many publicly available SVM packages: <u>http://www.kernel-machines.org/software</u>
 - Kernel-based framework is very powerful, flexible
 - SVMs work very well in practice, even with very small training sample sizes
- Cons
 - No "direct" multi-class SVM, must combine two-class SVMs
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Combine weak classifiers to yield a strong one

Slides by Xu and Arun

Toy Example (by Antonio Torralba)

This is a 'weak classifier': It performs slightly better than chance.

Each data point has

a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

We update the weights:

 $w_t \leftarrow w_t \exp\{-y_t H_t\}$

Each data point has

a class label:

$$y_t = \begin{cases} +1 (\bullet) \\ -1 (\bullet) \end{cases}$$

We update the weights:

 $w_t \leftarrow w_t \exp\{-y_t H_t\}$

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

AdaBoost (Freund and Schapire)

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

 $h_t: X \to \{-1, +1\}$

with small error ϵ_t on D_t :

 $\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$

• output final classifier H_{final}

Procedure of Adaboost

• constructing D_t :

•
$$D_1(i) = 1/m$$

• given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t = normalization constant$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

• final classifier:

•
$$H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$$

Yuille, Snow, Nitzbert, 1998 Amit, Geman 1998 Papageorgiou, Poggio, 2000 Heisele, Serre, Poggio, 2001 Agarwal, Awan, Roth, 2004 Schneiderman, Kanade 2004 Carmichael, Hebert 2004

. . .

Weak detectors

Textures of textures

Tieu and Viola, CVPR 2000

Every combination of three filters generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations on test time are very efficient. Boosting also avoids overfitting to some extend.

Haar wavelets

Haar filters and integral image

Viola and Jones, ICCV 2001

The average intensity in the block is computed with four sums independently of the block size.

Haar wavelets

Papageorgiou & Poggio (2000)

vertical

horizontal

diagonal

E

Polynomial SVM

Edges and chamfer distance

Edge fragments

Opelt, Pinz, Zisserman, ECCV 2006

Two boundary Matching Naon the edge image fragments Va. Overlap of centroid predictions similarities of matches Matching γ_b or the edge image voting for same centroid All matched boundary Original Image fragments Centroid Voting on a subset of the matched fragments

Weak detector = k edge fragments and threshold. Chamfer distance uses 8 orientation planes

Segmentation / Detection Backprojected Maximum

Histograms of oriented gradients

• SIFT, D. Lowe, ICCV 1999

Keypoint descriptor

• Shape context

Belongie, Malik, Puzicha, NIPS 2000

• Dalal & Trigs, 2006

weighted

pos wts

weighted neg wts