Multiview Reconstruction

Why More Than 2 Views?

• Baseline

– Too short – low accuracy

- Too long - matching becomes hard

Why More Than 2 Views?

Ambiguity with 2 views

Why More Than 2 Views?

Ambiguity with 2 views

Trinocular Stereo

- Straightforward approach to eliminate bad correspondences
 - Pick 2 views, find correspondences
 - For each matching pair, reconstruct 3D point
 - Project point into 3rd image
 - If can't find correspondence near predicted location, reject

- Slightly different algorithm for *n* cameras:
- Pick one reference view
- For each candidate depth
 - Compute sum of squared differences to all other views, assuming correct disparity for view
- Resolves ambiguities: only correct depths will "constructively interfere"

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b. The horizontal axis is normalized such that 8bF = 1.

Multibaseline Stereo Reconstruction

(a)

(b)

Figure 7: The CMU Video-Rate Stereo Machine Prototype System: (a) camera head; (b) processor boards

Problems with Multibaseline Stereo

- Have to pick a reference view
- Occlusion
 - With many cameras / large baseline, occlusion becomes likely
 - Contributes incorrect values to error function

Volumetric Multiview Approaches

- Goal: find a model consistent with images
- "Model-centric" (vs. image-centric)
- Typically use discretized volume (voxel grid)
- For each voxel, compute occupied / free (for some algorithms, also color, etc.)

Photo Consistency

- Result: not necessarily correct scene
- Many scenes produce the same images

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

- Find silhouettes in all images
- Exact version:
 - Back-project all silhouettes, find intersection

- Limit of silhouette carving is visual hull or line hull
- Complement of lines that don't intersect object
- In general not the same as object
 - Can't recover "pits" in object
- Not the same as convex hull

• Discrete version:

- Loop over all voxels in some volume
- If projection into images lies inside all silhouettes, mark as occupied
- Else mark as free

Voxel Coloring

- Seitz and Dyer, 1997
- In addition to free / occupied, store color at each voxel
- Explicitly accounts for occlusion

Voxel Coloring

- Basic idea: sweep through a voxel grid
 - Project each voxel into each image in which it is visible
 - If colors in images agree, mark voxel with color
 - Else, mark voxel as empty
- Agreement of colors based on comparing standard deviation of colors to threshold

Voxel Coloring and Occlusion

- Problem: which voxels are visible?
- Solution, part 1: constrain camera views
 - When a voxel is considered, necessary occlusion information must be available
 - Sweep occluders before occludees
 - Constrain camera positions to allow this sweep

Voxel Coloring Sweep Order

Voxel Coloring Camera Positions

Inward-looking Cameras above scene Outward-looking Cameras inside scene

Cameras oriented in many different directionsPlanar depth ordering does not apply

Layers radiate outwards from cameras

Seitz

Layers radiate outwards from cameras

Seitz

Layers radiate outwards from cameras

Voxel Coloring and Occlusion

- Solution, part 2: per-image mask of which pixels have been used
 - Each pixel only used once
 - Mask filled in as sweep progresses

Image Acquisition

Selected Dinosaur Images

Selected Flower Images

Calibrated Turntable
360° rotation (21 images)

Voxel Coloring Results

Dinosaur Reconstruction

72 K voxels colored7.6 M voxels tested7 min. to computeon a 250MHz SGI

Flower Reconstruction

70 K voxels colored7.6 M voxels tested7 min. to computeon a 250MHz SGI

Voxel Coloring Results

- With texture: good results
- Without texture: regions tend to "bulge out"
 - Voxels colored at earliest time at which projection into images is consistent
 - Model good for re-rendering: image will look correct for viewpoints near the original ones

Limitations of Voxel Coloring

- A view-independent depth order may not exist
- Need more powerful general-case algorithms
 - Unconstrained camera positions
 - Unconstrained scene geometry/topology

Initialize to a volume V containing the true scene Choose a voxel on the current surface Project to visible input images Carve if not photo-consistent Repeat until convergence

Kutulakos & Seitz

- Faster alternative:
 - Sweep plane in each of 6 principal directions
 - Consider cameras on only one side of plane
 - Repeat until convergence

True Scene

Reconstruction

Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Space Carving Results: Hand

Input Image (1 of 100)

Views of Reconstruction