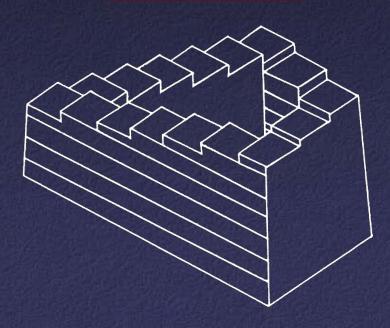
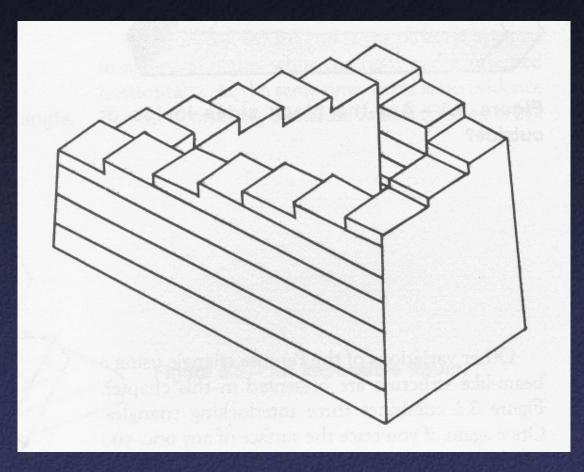
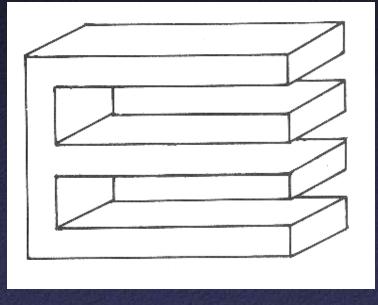
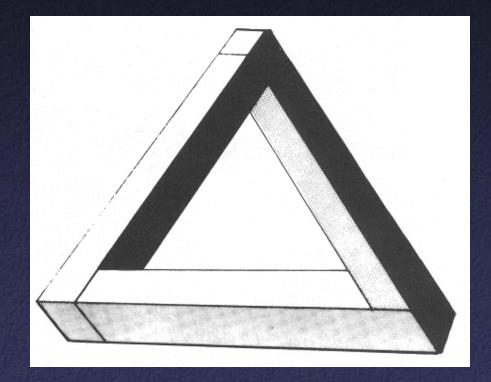
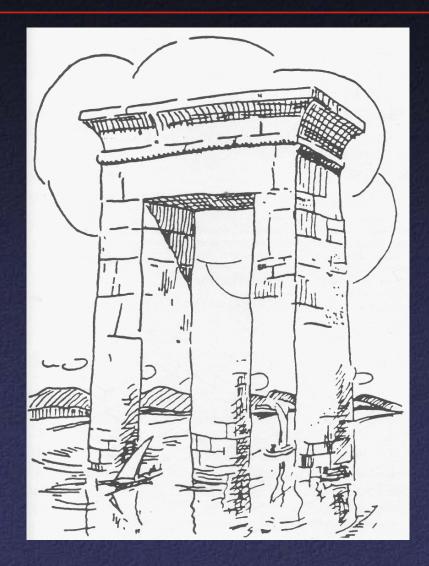
3D Vision

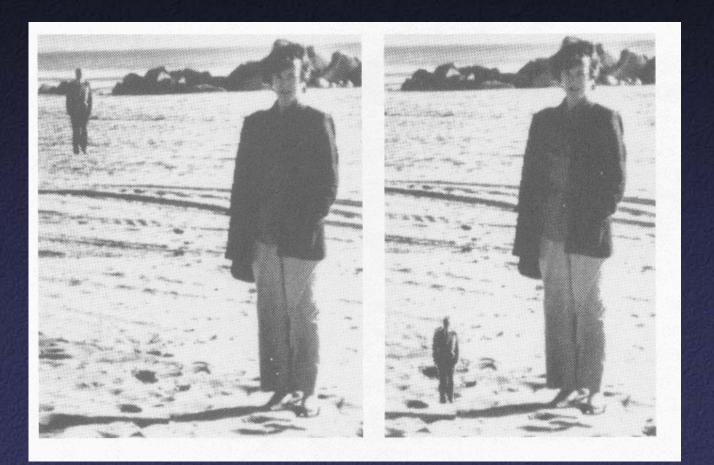


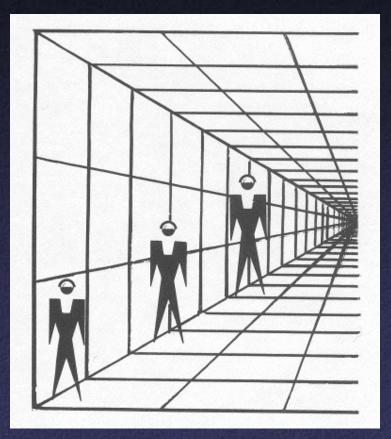


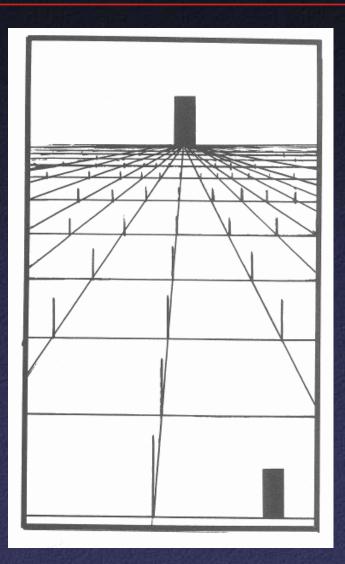


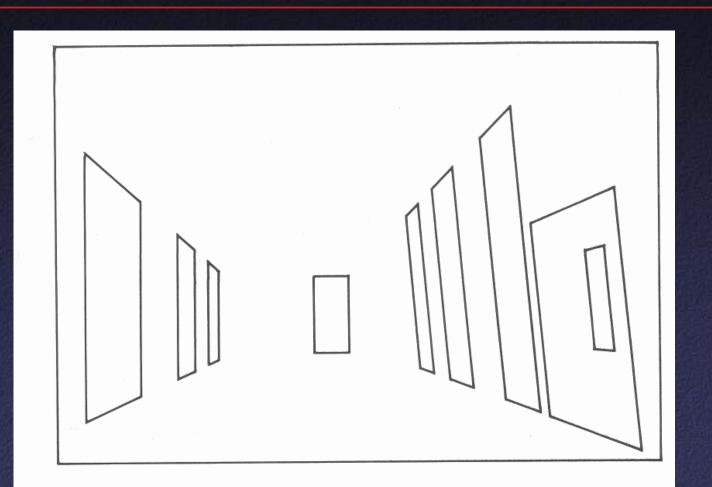


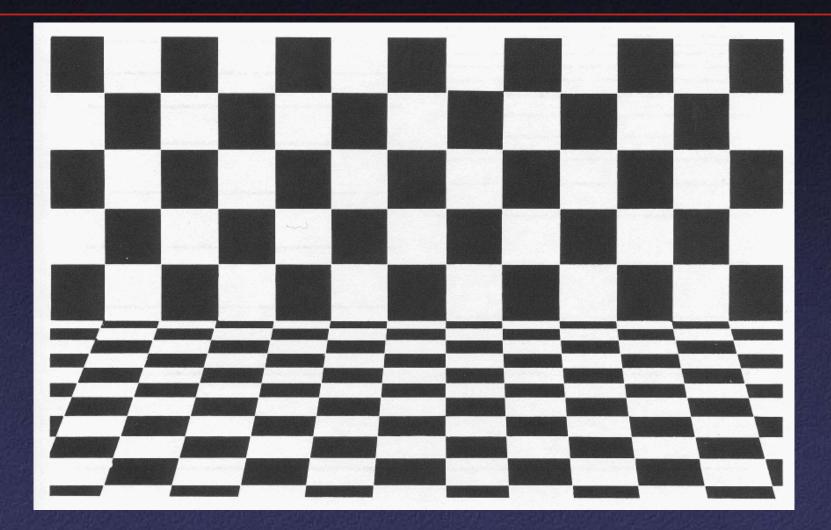


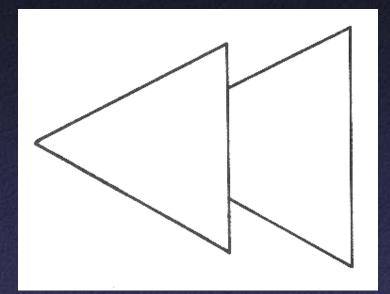












3D Perception: Conclusions

Perspective is assumed
Relative depth ordering
Occlusion is important
Local consistency

3D Perception: Stereo

- Experiments show that absolute depth estimation not very accurate

 Low "relief" judged to be deeper than it is
- Relative depth estimation very accurate

 Can judge which object is closer for stereo disparities
 of a few seconds of arc

3D Computer Vision

- Accurate (or not) shape reconstruction
- Some things easier to understand on 3D models than in 2D:
 - Occlusion
 - Variation with lighting (shading)
 - Variation with viewpoint
- As a result, some problems become easier:
 - Segmentation
 - Recognition

3D Data Types

- Point Data
- Volumetric Data
- Surface Data

3D Data Types: Point Data

• "Point clouds"

- Advantage: simplest data type
- Disadvantage: no information on adjacency / connectivity

3D Data Types: Volumetric Data

- Regularly-spaced grid in (x,y,z): "voxels"
- For each grid cell, store
 - Occupancy (binary: occupied / empty)
 - Density
 - Other properties
- Popular in medical imaging
 - CAT scans
 - -MRI

3D Data Types: Volumetric Data

• Advantages:

- Can represent inside of object
- Uniform sampling: simpler algorithms
- Disadvantages:
 - Lots of data
 - Wastes space if only storing a surface
 - Most "vision" sensors / algorithms return point or surface data

3D Data Types: Surface Data

Polyhedral

- Piecewise planar
- Polygons connected together
- Most popular: "triangle meshes"

Smooth

- Higher-order (quadratic, cubic, etc.) curves
- Bézier patches, splines, NURBS, subdivision surfaces, etc.

3D Data Types: Surface Data

• Advantages:

- Usually corresponds to what we see
- Usually returned by vision sensors / algorithms
- Disadvantages:
 - How to find "surface" for translucent objects?
 - Parameterization often non-uniform
 - Non-topology-preserving algorithms difficult

3D Data Types: Surface Data

- Implicit surfaces (cf. parametric)
 - Zero set of a 3D function
 - Usually regularly sampled (voxel grid)
- Advantage: easy to write algorithms that change topology
- Disadvantage: wasted space, time

2¹/₂-D Data

- Image: stores an intensity / color along each of a set of regularly-spaced rays in space
 Range image: stores a depth along each of a set of regularly-spaced rays in space
 Not a complete 3D description: does not store objects occluded (from some viewpoint)
- View-dependent scene description

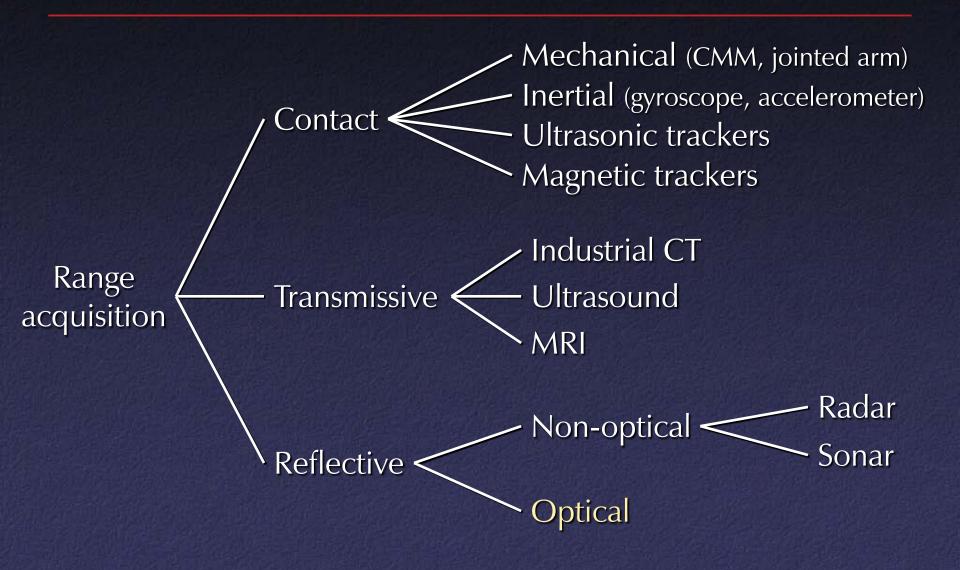
- This is what most sensors / algorithms really return
- Advantages
 - Uniform parameterization
 - Adjacency / connectivity information
- Disadvantages
 - Does not represent entire object
 - View dependent

$2^{1/2}$ -D Data

- Range images
- Range surfaces
- Depth images
- Depth maps
- Height fields
- 2¹/₂-D images
- Surface profiles
- xyz maps

...

Range Acquisition Taxonomy



Range Acquisition Taxonomy

Passive

Active

Shape from X: stereo motion shading texture focus defocus

Active variants of passive methods Stereo w. projected texture Active depth from defocus Photometric stereo

• Time of flight

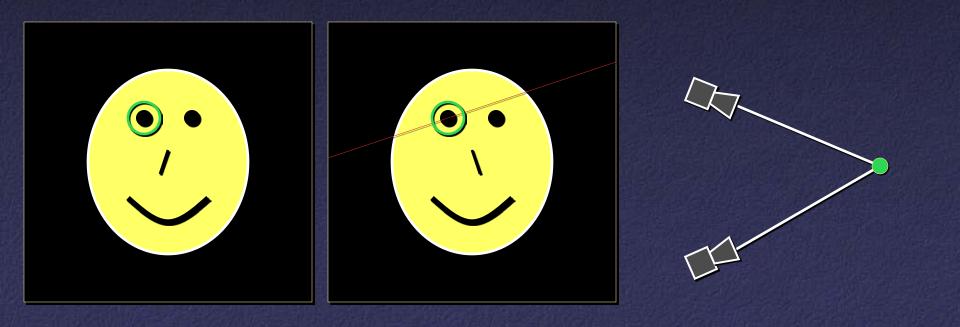
Triangulation

Optical methods

Optical Range Acquisition Methods

- Advantages:
 - Non-contact
 - Safe
 - Usually inexpensive
 - Usually fast
- Disadvantages:
 - Sensitive to transparency
 - Confused by specularity and interreflection
 - Texture (helps some methods, hurts others)

• Find feature in one image, search along epipolar line in other image for correspondence



Stereo

- Advantages:
 - Passive
 - Cheap hardware (2 cameras)
 - Easy to accommodate motion
 - Intuitive analogue to human vision
- Disadvantages:
 - Only acquire good data at "features"
 - Sparse, relatively noisy data (correspondence is hard)
 - Bad around silhouettes
 - Confused by non-diffuse surfaces
- Variant: multibaseline stereo to reduce ambiguity

Shape from Motion

- "Limiting case" of multibaseline stereo
- Track a feature in a video sequence
- For *n* frames and *f* features, have $2 \cdot n \cdot f$ knowns, $6 \cdot n + 3 \cdot f$ unknowns

Shape from Motion

• Advantages:

- Feature tracking easier than correspondence in faraway views
- Mathematically more stable (large baseline)
- Disadvantages:
 - Does not accommodate object motion
 - Still problems in areas of low texture, in non-diffuse regions, and around silhouettes

Shape from Shading

- Given: image of surface with known, constant reflectance under known point light
- Estimate normals, integrate to find surface
 Problem: ambiguity <u>*</u>

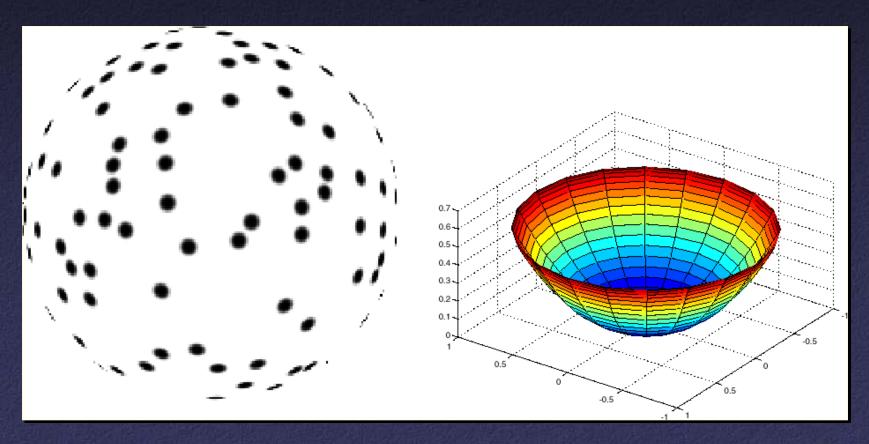
Shape from Shading

Advantages:

- Single image
- No correspondences
- Analogue in human vision
- Disadvantages:
 - Mathematically unstable
 - Can't have texture
- "Photometric stereo" (active method) more practical than passive version

Shape from Texture

 Mathematically similar to shape from shading, but uses stretch and shrink of a (regular) texture



Shape from Texture

- Analogue to human vision
- Same disadvantages as shape from shading

Shape from Focus and Defocus

- Shape from focus: at which focus setting is a given image region sharpest?
- Shape from defocus: how out-of-focus is each image region?
- Passive versions rarely used
- Active depth from defocus can be made practical

Correspondence and Stereopsis

Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]

Introduction

- Disparity:
 - Informally: difference between two pictures
 - Allows us to gain a strong sense of depth
- Stereopsis:
 - Ability to perceive depth from disparity

• Goal:

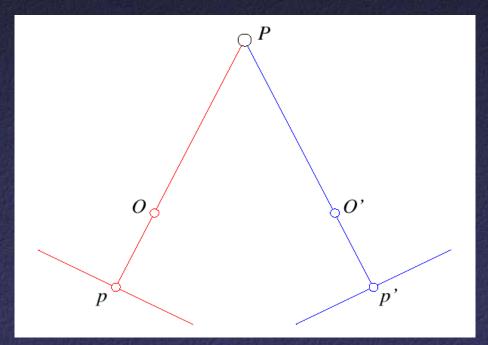
- Design algorithms that mimic stereopsis

Stereo Vision

- Two parts
 - Binocular fusion of features observed by the eyes
 - Reconstruction of their three-dimensional preimage

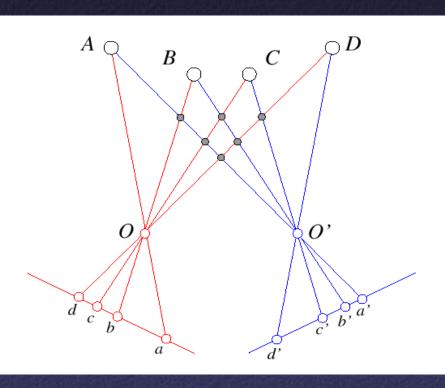
Stereo Vision – Easy Case

- A single point being observed
 - The preimage can be found at the intersection of the rays from the focal points to the image points



Stereo Vision – Hard Case

Many points being observed Need some method to establish correspondences

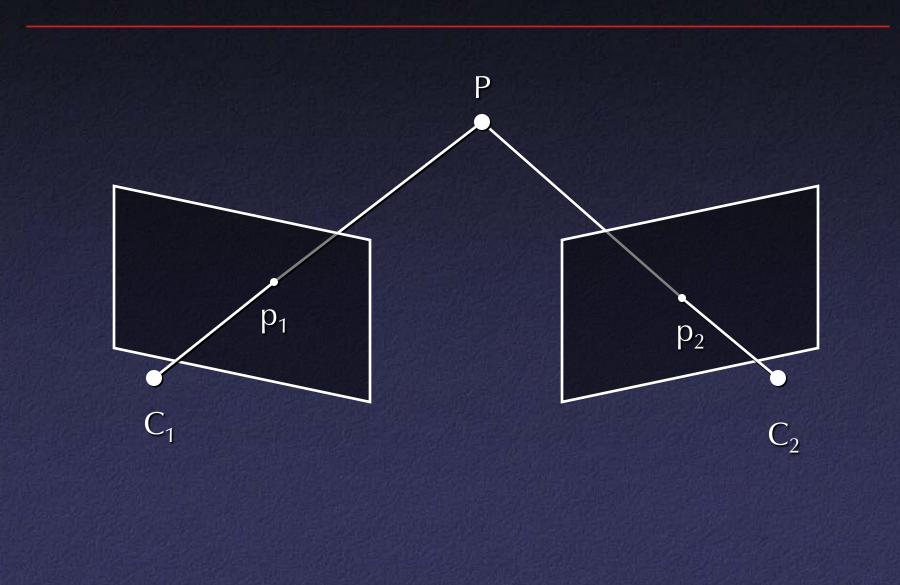


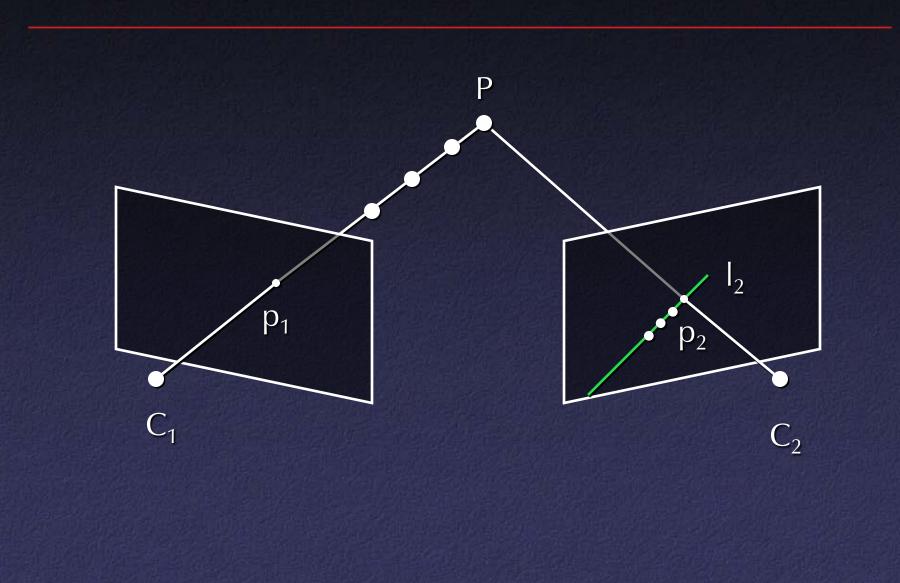
Components of Stereo Vision Systems

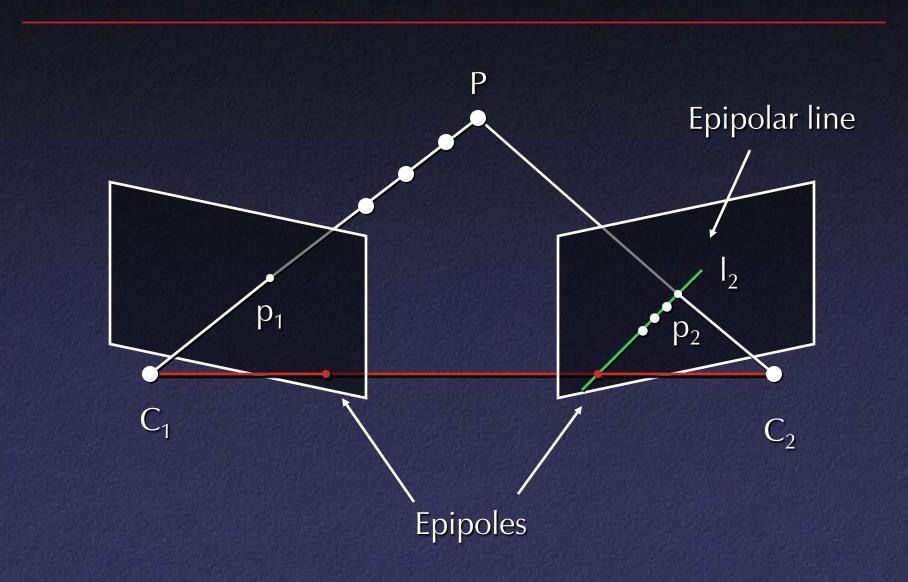
- Camera calibration: next week
- Image rectification: simplifies the search for correspondences
- Correspondence: which item in the left image corresponds to which item in the right image
- Reconstruction: recovers 3-D information from the 2-D correspondences

Multi-Camera Geometry

- Epipolar geometry relationship between observed positions of points in multiple cameras
- Assume:
 - 2 cameras
 - Known intrinsics and extrinsics







 Epipolar constraint: corresponding points must lie on conjugate epipolar lines

- Search for correspondences becomes a 1-D problem

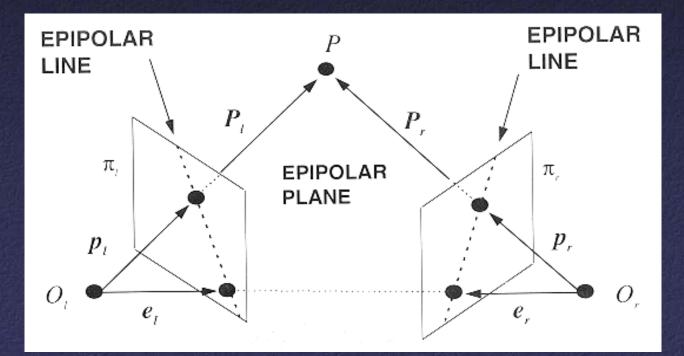
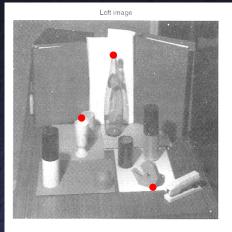
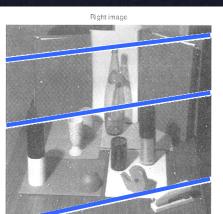


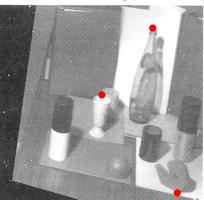
Image Rectification

 Warp images such that conjugate epipolar lines become collinear and parallel to u axis





Rectified left image



Rectified right image

Disparity

- With rectified images, disparity is just (horizontal) displacement of corresponding features in the two images
 - Disparity = 0 for distant points
 - Larger disparity for closer points
 - Depth of point proportional to 1/disparity

 Given an element in the left image, find the corresponding element in the right image

- Classes of methods
 - Correlation-based
 - Feature-based (next week)

Correlation-Based Correspondence

 Input: rectified stereo pair and a point (u,v) in the first image

• Method:

- Consider window centered at (u,v)
- For each potential matching window centered at (u+d,v) in the second image, compute matching score of correspondence
- Set disparity to value of d giving highest score

Sum of Squared Differences

• Recall: SSD for image similarity

$$\psi(u,v) = -(u-v)^2$$

Negative sign so that higher values mean greater similarity

Normalized Cross-Correlation

• Normalize to eliminate brightness sensitivity:

$$\psi(u,v) = \frac{(u-\overline{u})(v-\overline{v})}{\sigma_u \sigma_v}$$

where

 $\overline{u} = \operatorname{average}(u)$ $\sigma_u = \operatorname{standard} \operatorname{deviation}(u)$

 Can help for non-diffuse scenes, hurts for perfectly diffuse ones

Window-Based Correlation

- For each pixel
 - For each disparity
 - For each pixel in window
 - Compute difference
 - Find disparity with minimum SSD

Reverse Order of Loops

- For each disparity
 - For each pixel
 - For each pixel in window
 - Compute difference

Find disparity with minimum SSD at each pixel

Incremental Computation

• Given SSD of a window, at some disparity

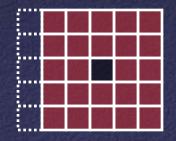
Image 1

		i an

Image 2

Incremental Computation

• Want: SSD at next location



Incremental Computation

 Subtract contributions from leftmost column, add contributions from rightmost column

Image 1

—			+
—		Ū(b	+
			+
_			+
_			+

Image 2

_			+
_	ġ,		+
			+
			+
-			+

Selecting Window Size

Small window: more detail, but more noise
Large window: more robustness, less detail
Example:

Selecting Window Size

3 pixel window

20 pixel window