Segmentation and Clustering

Segmentation and Clustering

 Segmentation: Divide image into regions of similar contents Clustering: Aggregate pixels into regions of similar contents

But Wait!

- We speak of segmenting foreground from background
- Segmenting out skin colors
- Segmenting out the moving person
- How do these relate to "similar regions"?

Segmentation and Clustering

- Defining regions
 - Should they be compact? Smooth boundary?
- Defining similarity
 - Color, texture, motion, ...
- Defining similarity of regions
 Minimum distance, mean, maximum

Grouping Cues

Segmentation and Clustering Applications

Semantics

Segmentation and Clustering Applications

Statistics

Templates

Clustering Based on Color

- Let's make a few concrete choices:
 - Arbitrary regions
 - Similarity based on color only
 - Similarity of regions =
 distance between mean colors

Simple Agglomerative Clustering

- Start with each pixel in its own cluster
- Iterate:
 - Find pair of clusters with smallest inter-cluster distance
 - Merge
- Stopping threshold

 "Superpixels": stop clustering early, pass result to more complex algorithms

Simple Divisive Clustering

- Start with whole image in one cluster
- Iterate:
 - Find cluster with largest intra-cluster variation
 - Split into two pieces that yield largest inter-cluster distance
- Stopping threshold

Difficulties with Simple Clustering

- Many possibilities at each iteration
- Computing distance between clusters or optimal split expensive
- Heuristics to speed this up:
 - For agglomerative clustering, approximate each cluster by average for distance computations
 - For divisive clustering, use summary (histogram) of a region to compute split

- Instead of merging or splitting, start out with the clusters and move them around
 - 1. Pick number of clusters *k*
 - 2. Randomly scatter k "cluster centers" in color space
 - 3. Repeat:
 - a. Assign each data point to its closest cluster center
 - b. Move each cluster center to the mean of the points assigned to it

Results of Clustering

Original Image

k-means, k=5

k-means, k=11

Results of Clustering

Sample clusters with *k*-means clustering based on color

Other Distance Measures

Suppose we want to have compact regions

- New feature space: 5D
 (2 spatial coordinates, 3 color components)
- Points close in this space are close both in color and in actual proximity

Results of Clustering

Sample clusters with *k*-means clustering based on color and distance

Other Distance Measures

- Problem with simple Euclidean distance: what if coordinates range from 0-1000 but colors only range from 0-255?
 - Depending on how things are scaled, gives different weight to different kinds of data
- Weighted Euclidean distance: adjust weights to emphasize different dimensions

$$||x - y||^2 = \sum c_i (x_i - y_i)^2$$

Mahalanobis Distance

Automatically assign weights based on actual variation in the data

$$\left\|\vec{x} - \vec{y}\right\|^2 = \left(\vec{x} - \vec{y}\right)^{\mathrm{T}} \mathbf{C}^{-1} \left(\vec{x} - \vec{y}\right)$$

where C is covariance matrix of all points

Gives each dimension "equal" weight

Also accounts for correlations between different dimensions

Segmentation Based on Graph Cuts

- Create weighted graph:
 - Nodes = pixels in image
 - Edge between each pair of nodes
 - Edge weight = similarity (intensity, color, texture, etc.)

Segmentation Based on Graph Cuts

Partition into disconnected segments

- Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a Graph

Link Cut

- set of links whose removal makes a graph disconnected
- $-\cos t = \sin \theta$ of costs of all edges

Min-cut

- fast (polynomial-time) algorithm
- gives segmentation

But Min Cut Is Not Always the Best Cut...

Cuts in a Graph

- Normalized Cut
 - removes penalty for large segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch Ano fast exact algorithms...

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- elasticity proportional to cost
- vibration "modes" correspond to segments
 - can compute these by solving a generalized eigenvector problem
 - for more details, see

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997

Interpretation as a Dynamical System

Designing Grouping Features

Low-level cues

- Brightness similarity
- Color similarity
- Texture similarity

Mid-level cues

- Contour continuity
- Convexity
- Parallelism
- Symmetry
- High-level cues
 - Object knowledge
 - Scene structure

[Based on slides by Xiaofeng Ren]

Brightness and Color Contrast

- 1976 CIE L*a*b* colorspace
- Brightness Gradient BG(x,y,r,θ)
 χ² difference in L* distribution
- Color Gradient CG(x,y,r,θ)

 *χ*² difference in a* and b* distributions

$$\chi^{2}(g,h) = \frac{1}{2} \sum_{i} \frac{(g_{i} - h_{i})^{2}}{g_{i} + h_{i}}$$

Texture Contrast

- Texture Gradient $TG(x,y,r,\theta)$
 - $-\chi^2$ difference of texton histograms
 - Textons are vector-quantized filter outputs (through k-means)

Boundary Classification

Combining Cues

Image Canny Pb [Martin, Fowlkes, Malik, Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cue₂, PAMI 2004]

Affinity using Intervening Contour

W(p1,p2) >>W(p1,p3) as p1 and p2 are more likely to belong to the same region than are p1 and p3, which are separated by a strong boundary.

