
Segmentation and Clustering 

  



Segmentation and Clustering 

• Segmentation: 
Divide image 
into regions 
of similar contents 

• Clustering: 
Aggregate pixels 
into regions 
of similar contents 



But Wait! 

• We speak of segmenting foreground 
from background 

• Segmenting out skin colors 

• Segmenting out the moving person 

• How do these relate to “similar regions”? 



Segmentation and Clustering 

• Defining regions 
– Should they be compact?  Smooth boundary? 

• Defining similarity 
– Color, texture, motion, … 

• Defining similarity of regions 
– Minimum distance, mean, maximum 



Grouping Cues 



Segmentation and Clustering Applications 

Semantics 

“Intelligent 
scissors” 

Finding 
skin-colored 

regions 

Foreground / 
background 

segmentation 

Finding the 
moving objects 

Finding the 
cars in a 

video sequence 



Segmentation and Clustering Applications 

“Intelligent 
scissors” 

Finding 
skin-colored 

regions 

Foreground / 
background 

segmentation 

Finding the 
moving objects 

Finding the 
cars in a 

video sequence 

Statistics Templates 



Clustering Based on Color 

• Let’s make a few concrete choices: 
– Arbitrary regions 

– Similarity based on color only 

– Similarity of regions = 
distance between mean colors 



Simple Agglomerative Clustering 

• Start with each pixel in its own cluster 

• Iterate: 
– Find pair of clusters with smallest 

inter-cluster distance 

– Merge 

• Stopping threshold 
 

• “Superpixels”: stop clustering early, 
pass result to more complex algorithms 



Simple Divisive Clustering 

• Start with whole image in one cluster 

• Iterate: 
– Find cluster with largest intra-cluster variation 

– Split into two pieces that yield largest inter-cluster 
distance 

• Stopping threshold 



Difficulties with Simple Clustering 

• Many possibilities at each iteration 

• Computing distance between clusters or optimal 
split expensive 

• Heuristics to speed this up: 
– For agglomerative clustering, approximate each 

cluster by average for distance computations 

– For divisive clustering, use summary (histogram) of a 
region to compute split 



k-means Clustering 

1. Pick number of clusters k 

2. Randomly scatter k “cluster centers” in color space 

3. Repeat: 
a. Assign each data point to its closest cluster center 

b. Move each cluster center to the mean of the points 
assigned to it 

• Instead of merging or splitting, start out with 
the clusters and move them around 



k-means Clustering 
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k-means Clustering 



Results of Clustering 

Original Image k-means, k=5 k-means, k=11 



Results of Clustering 

Sample clusters with k-means clustering 
based on color 



Other Distance Measures 

• Suppose we want to have compact regions 

• New feature space: 5D 
(2 spatial coordinates, 3 color components) 

• Points close in this space are close both in color 
and in actual proximity 



Results of Clustering 

Sample clusters with k-means clustering 
based on color and distance 



Other Distance Measures 

• Problem with simple Euclidean distance: 
what if coordinates range from 0-1000 but 
colors only range from 0-255? 
– Depending on how things are scaled, gives different 

weight to different kinds of data 

• Weighted Euclidean distance: adjust weights to 
emphasize different dimensions 
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Mahalanobis Distance 

• Automatically assign weights based on actual 
variation in the data 
 
 
where C is covariance matrix of all points 

• Gives each dimension “equal” weight 

• Also accounts for correlations between different 
dimensions 
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Segmentation Based on Graph Cuts 

• Create weighted graph: 
– Nodes = pixels in image 

– Edge between each pair of nodes 

– Edge weight = similarity (intensity, color, texture, etc.) 
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[Based on slide by S. Seitz] 



Segmentation Based on Graph Cuts 

• Partition into disconnected segments 

• Easiest to break links that have low cost (low similarity) 
– similar pixels should be in the same segments 

– dissimilar pixels should be in different segments 
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[Based on slide by S. Seitz] 



Cuts in a Graph 

• Link Cut 
– set of links whose removal makes a graph disconnected 

– cost = sum of costs of all edges 

• Min-cut 
– fast (polynomial-time) algorithm 

– gives segmentation 
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[Based on slide by S. Seitz] 



But Min Cut Is Not Always the Best Cut... 

[Based on slide by S. Seitz] 



Cuts in a Graph 

• Normalized Cut 
– removes penalty for large segments 

 
 

– volume(A) = sum of costs of all edges that touch A 

– no fast exact algorithms… 

 

A B 

[Based on slide by S. Seitz] 



Interpretation as a Dynamical System 

Treat the links as springs and shake the system 
• elasticity proportional to cost 
• vibration “modes” correspond to segments 

– can compute these by solving a generalized eigenvector problem 
– for more details, see  

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, CVPR, 1997  

[Based on slide by S. Seitz] 



Interpretation as a Dynamical System 

[Based on slide by S. Seitz] 



Designing Grouping Features 

Low-level cues 
• Brightness similarity 
• Color similarity 
• Texture similarity 

Mid-level cues 
• Contour continuity 
• Convexity 
• Parallelism 
• Symmetry 

High-level cues 
• Object knowledge 
• Scene structure 

[Based on slides by Xiaofeng Ren] 





Brightness and Color Contrast 

• 1976 CIE L*a*b* colorspace 

• Brightness Gradient BG(x,y,r,θ)  
χ2 difference in L* distribution 

• Color Gradient CG(x,y,r,θ) 
χ2 difference in a* and b* distributions 
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Texture Contrast 

• Texture Gradient TG(x,y,r,θ) 
– χ2 difference of texton histograms 

– Textons are vector-quantized filter outputs (through k-means) 

 



Boundary Classification 

I 

T 

B 

C 

non-boundaries boundaries 



Combining Cues 

Image Canny Pb 
[Martin, Fowlkes, Malik, Learning to Detect Natural Image Boundaries Using 

Local Brightness, Color, and Texture Cues, PAMI 2004]  

http://vision.bc.edu/~dmartin/papers/tpami2004.pdf�


W(p1,p2) >>W(p1,p3) as p1 and p2 are more likely to 
belong to the same region than are p1 and p3, which are 
separated by a strong boundary. 

Affinity using Intervening Contour 
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