
Tracking 

  



Components of a Tracking System 

• Object model including position, 
and optionally size, appearance, velocity 

• Prediction of object locations in new frame 

• Search in new frame 

• Data association 

• Update to model 

 

• Also useful: background model 



Birchfield 

Face Tracking 












Tracking Challenges 

• Occlusion 

• Similar foreground/background 

• Camera motion 

• Brightness changes: 
– Overall 
– Foreground object 

• Update foreground model? 
– No: can’t deal with brightness changes 
– Yes: “tracker drift” 



Object Model 

• Position 

• Dynamic model: velocity, acceleration, etc. 

• Appearance model: 
– None (object = anything that’s not background) 

– Color / hue histogram 

– Template 

• Shape model: 
– None (point): “feature tracking” 

– Ellipse / rectangle: “blob tracking” 

– Full outline: snakes, etc. 



Prediction 

• Simple approximations: 
– Window around last position 

– Window, updated by velocity on last frame 

• Prediction uncertainty (together with object size) 
gives search window 

• Kalman filter (later today) 



Search 

• Search strategy depends on appearance model 
– If we’re using a template, look for it… 

– If using foreground color histograms, 
look up pixels to evaluate probability 

• If no appearance model: “background subtraction” 
– In simplest case, take |frame – background| 

– More generally: estimate probability that a 
given pixel is foreground given background model 

– Compare to threshold 



Background Models 

• Major decision: adapt over time? 
– If no, does not respond to changing conditions, 

but appropriate for short videos 

– If yes, danger of still foreground objects being 
treated as background 

• Non-adaptive methods: 
– Single frame obtained @ beginning 

(or mean/median/mode of n frames) 



Single-Frame Statistical Model 

• Alternative: mean + std. dev. per pixel 
– Gathered over many frames before tracking begins 

– Allows for noise, small motion, small changes in 
brightness, etc. 

– Permits estimation of probability: 
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Gaussian Mixture Model 

• Background statistics often not unimodal 
– Trees in the wind, shadows, etc. 

• Solution: mixture of Gaussians @ each pixel 
– Compute using expectation maximization 

• Still allows computing pbackground 

• Usual difficulties with determining # of clusters 
– In practice, 3-5 observed to be a good number 



Adaptive Background Models 

• Previous frame 

• Mean/median of previous n frames 

• Rolling average of previous frames 

• For GMM, update closest Gaussian 

• In all cases, must be careful not to update pixels 
determined to be foreground 



Dealing with Camera Motion 

• If camera is moving, can eliminate its effects: 
“image stabilization” or “dominant motion 
estimation” 

• Image alignment using feature matching, 
optical flow, phase correlation, etc. 
– Must use robust methods to not get confused by 

motion of foreground object(s) 
– Often done using EM 
– Implicitly segments the image: layered motion 



Data Association 

• For tracking multiple objects, need to 
maintain identities across frames 

• For feature tracking, simplest option is 
nearest neighbor (after prediction) 
– Can include threshold to permit occlusion 

– More robust: nearest neighbor in both directions 

– Can also include “soft”, probabilistic assignment 



EM for Blob Tracking 

• Represent each object as a “blob”: 
Gaussian with mean µ and covariance Σ 
– Often illustrated as ellipse or rectangle 

• Dynamic model for mean position 
(and sometimes, but rarely, covariance) 



EM for Blob Tracking 

• At each frame, predict new positions of blobs 
– Implicitly limits region of interest (ROI) to 

a few standard deviations around predicted position 

• Construct “strength image” 
– Thresholded result of background subtraction 

– (Output of feature tracker) 

• Run EM on probability image to update positions 



EM Tracking Demo 

  



Mean Shift Tracker 

• Applied when we have foreground color histogram 
(as opposed to Gaussian) 

• EM-like loop 
– Let m = model’s normalized color histogram 

– Let d = data color histogram (i.e., histogram of ROI) 

– Set 

– Compute mean shift: 
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Updating Model? 

• With histogram-based trackers, easy for part of 
background to get into foreground histogram 
– Leads to “tracker drift”: tracker locks onto different 

object (or, more typically, part of background) 

– Result: often better to stay with constant histogram, or 
adapt very slowly over time 



Updating Model? 

• Biggest motivation for adaptation: 
lighting changes 
– But using only Hue is usually insensitive to those… 

– BIG CAVEAT: be sure to undo gamma when 
converting to HSV space 

– ANOTHER BIG CAVEAT: be sure to discard pixels 
with low S or V 



Kalman Filtering 

• Assume that results of experiment 
(i.e., tracking) are noisy 
measurements of system state 

• Model of how system evolves 

• Optimal combination 
of system model and observations 

• Prediction / correction framework 
Rudolf Emil Kalman 

Acknowledgment: much of the following material is based on the 
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC) 



Simple Example 

• Measurement of a single point z1 

• Variance σ1
2 (uncertainty σ1) 

– Assuming Gaussian distribution 

• Best estimate of true position  

• Uncertainty in best estimate 
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Simple Example 

• Second measurement z2, variance σ2
2 

• Best estimate of true position? 

z1 z2 



Simple Example 

• Second measurement z2, variance σ2
2 

• Best estimate of true position: weighted average  

 

 

 

 

• Uncertainty in best estimate 
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Online Weighted Average 

• Combine successive measurements into 
constantly-improving estimate 

• Uncertainty decreases over time 

• Only need to keep current measurement, 
last estimate of state and uncertainty 



Terminology 

• In this example, position is state 
(in general, any vector) 

• State can be assumed to evolve over time 
according to a system model or process model 
(in this example, “nothing changes”) 

• Measurements (possibly incomplete, possibly 
noisy) according to a measurement model 

• Best estimate of state     with covariance P x̂



Linear Models 

• For “standard” Kalman filtering, everything 
must be linear 

• System model: 

 

• The matrix Φk is state transition matrix 

• The vector ξk represents additive noise, 
assumed to have covariance Q 

111 −−− +Φ= kkkk xx ξ



Linear Models 

• Measurement model: 

 

 

• Matrix H is measurement matrix 

• The vector µ is measurement noise, 
assumed to have covariance R 

kkkk xHz µ+=



PV Model 

• Suppose we wish to incorporate velocity 
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Prediction/Correction 

• Predict new state 

 

 

• Correct to take new measurements into account 

 

 

• Important point: no need to invert 
measurement matrix H 
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Kalman Gain 

• Weighting of process model vs. measurements 

 

 

• Compare to what we saw earlier: 
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Results: Position-Only Model 

Moving 

[Welch & Bishop] 

Still 



Results: Position-Velocity Model 

[Welch & Bishop] 

Moving Still 



Extension: Multiple Models 

• Simultaneously run many KFs with different 
system models 

• Estimate probability that each KF is correct 

• Final estimate: weighted average 



Probability Estimation 

• Given some Kalman filter, the probability of a 
measurement  zk is just n-dimensional Gaussian 
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Results: Multiple Models 

[Welch & Bishop] 



Results: Multiple Models 

[Welch & Bishop] 



Results: Multiple Models 

[Welch & Bishop] 



Extension: SCAAT 

• H can be different at different time steps 
– Different sensors, types of measurements 

– Sometimes measure only part of state 

• Single Constraint At A Time (SCAAT) 
– Incorporate results from one sensor at once 

– Alternative: wait until you have measurements from 
enough sensors to know complete state (MCAAT) 

– MCAAT equations often more complex, but 
sometimes necessary for initialization 



UNC HiBall 

• 6 cameras, looking at LEDs on ceiling 

• LEDs flash over time 

[Welch & Bishop] 



Extension: Nonlinearity (EKF) 

• HiBall state model has nonlinear degrees of 
freedom (rotations) 

• Extended Kalman Filter allows nonlinearities by: 
– Using general functions instead of matrices 

– Linearizing functions to project forward 

– Like 1st order Taylor series expansion 

– Only have to evaluate Jacobians (partial derivatives), 
not invert process/measurement functions 



Other Extensions 

• On-line noise estimation 

• Using known system input (e.g. actuators) 

• Using information from both past and future 

• Non-Gaussian noise and particle filtering 
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