
Probability and Statistics in Vision, 
Gaussian Mixture Models and EM 

  



Probability 

• Objects not all the same 
– Many possible shapes for people, cars, … 

– Skin has different colors 

• Measurements not all the same 
– Noise 

• But some are more probable than others 
– Green skin not likely 



Probability and Statistics 

• Approach: probability distributions over 
expected objects, expected observations 

• Perform mid- to high-level vision tasks by 
finding most likely model consistent with 
observations 

• Often don’t know probability distributions – 
learn them from statistics of training data 



Concrete Example – Skin Color 

• Suppose you want to find pixels with the 
color of skin 

• Step 1: learn likely distribution of skin colors 
from (possibly hand-labeled) training data 
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Conditional Probability 

• This is the probability of observing a given color 
given that the pixel is skin 

• Conditional probability p(color|skin) 



Skin Color Identification 

• Step 2: given a new image, want to find 
whether each pixel corresponds to skin 

• Maximum likelihood estimation: pixel is skin iff 
p(skin|color) > p(not skin|color) 

• But this requires knowing p(skin|color) and we 
only have p(color|skin) 



Bayes’s Rule 

• “Inverting” a conditional probability: 
         p(B|A) = p(A|B) ⋅ p(B) / p(A) 
Therefore, 
  p(skin|color) = p(color|skin) ⋅ p(skin) / p(color) 

 

• p(skin) is the prior – knowledge of the domain 

• p(skin|color) is the posterior – what we want 

• p(color) is a normalization term 



Priors 

• p(skin) = prior 
– Estimate from training data 

– Tunes “sensitivity” of skin detector 

– Can incorporate even more information: 
e.g. are skin pixels more likely to be found in certain 
regions of the image? 

• With more than 1 class, priors encode what 
classes are more likely 



Skin Detection Results 

Jones & Rehg 



Birchfield 

Skin Color-Based Face Tracking 












Learning Probability Distributions 

• Where do probability distributions come from? 

• Learn them from observed data 



Gaussian Model 

• Simplest model for probability distribution: 
Gaussian 
 
 
Symmetric: 
 
 
Asymmetric: 
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Maximum Likelihood 

• Given observations x1…xn, want to find model 
m that maximizes likelihood 

 

 

• Can rewrite as 
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Maximum Likelihood 

• If m is a Gaussian, this turns into 
 
 
 
and minimizing it (hence maximizing likelihood) 
can be done in closed form 
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Mixture Models 

• Although single-class models are useful, the real 
fun is in multiple-class models 

• p(observation) = Σ πclass pclass(observation) 

• Interpretation: the object has some probability 
πclass of belonging to each class 

• Probability of a measurement is a linear 
combination of models for different classes 



Learning Mixture Models 

 • No closed form solution 

• k-means: Iterative approach 
– Start with k models in mixture 

– Assign each observation to closest model 

– Recompute maximum likelihood parameters 
for each model 

– Repeat until no further change 



k-means 



k-means 
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k-means 



k-means 



k-means 



k-means 
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k-means 

• This process always converges (to something) 
– Not necessarily globally-best assignment 

• Informal proof: look at energy minimization 
 
 
– Reclassifying points reduces (or maintains) energy 

– Recomputing centers reduces (or maintains) energy 

– Can’t reduce energy forever 
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“Probabilistic k-means” 

• Use Gaussian probabilities to assign 
point ↔ cluster weights 
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• Use πp,j to compute weighted average and 
covariance for each cluster 

“Probabilistic k-means” 
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Expectation Maximization 

• This is a special case of the 
expectation maximization algorithm 

• General case: “missing data” framework 
– Have known data (feature vectors) and unknown 

data (assignment of points to clusters) 

– E step: use known data and current estimate of 
model to estimate unknown 

– M step: use current estimate of complete data to 
solve for optimal model 



EM and Robustness 

• One example of using generalized EM 
framework: robustness 

• Make one category correspond to “outliers” 
– Use noise model if known 

– If not, assume e.g. uniform noise 

– Do not update parameters in M step 



Example: Using EM to Fit to Lines 

Good data 



Example: Using EM to Fit to Lines 

With outlier 



Example: Using EM to Fit to Lines 

EM fit 

Weights of “line” 
(vs. “noise”) 



Example: Using EM to Fit to Lines 

EM fit – bad local minimum 

Weights of “line” 
(vs. “noise”) 



Example: Using EM to Fit to Lines 

Fitting to 
multiple 

lines 



Example: Using EM to Fit to Lines 

Local minima 



Weighted Observations 

• In some applications, the datapoints are pixels 
– Weighted by intensity 
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EM Demo 

  



Eliminating Local Minima 

• Re-run with multiple starting conditions 

• Evaluate results based on 
– Number of points assigned to each 

(non-noise) group 
– Variance of each group 
– How many starting positions converge 

to each local maximum 

• With many starting positions, can accommodate 
many outliers 



Selecting Number of Clusters 

• Re-run with different numbers of clusters, 
look at total error 

• Will often see “knee” in the curve 
 
 
 
 
 
Noise in data vs. error in model 

Number of clusters 
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Overfitting 

• Why not use many clusters, get low error? 

• Complex models bad at filtering noise 
(with k clusters can fit k data points exactly) 

• Complex models have less predictive power 

 

• Occam’s razor: entia non multiplicanda sunt 
praeter necessitatem (“Things should not be 
multiplied beyond necessity”) 



Training / Test Data 

• One way to see if you have overfitting problems: 
– Divide your data into two sets 

– Use the first set (“training set”) to train model 

– Compute error on the second set of data (“test set”) 

– If error not comparable to training, have overfitting 
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