Image Alignment and Mosaicing

Image Alignment Applications

- Local alignment:
 - Tracking
 - Stereo
- Global alignment:
 - Camera jitter elimination
 - Image enhancement
 - Panoramic mosaicing

Image Enhancement

Original

Enhanced

Anandan

Panoramic Mosaicing

Gigapixel panoramas & images

Panoramic Mosaicing

Align images
 Merge overlapping regions

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Optical Flow for Image Registration

- Compute local matches
- Least-squares fit to motion model
- Problem: outliers

Outlier Rejection

- Robust estimation: tolerant of outliers
- In general, methods based on absolute value rather than square:

minimize $\Sigma |\mathbf{x}_i - f|$, not $\Sigma (\mathbf{x}_i - f)^2$

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Correlation / Search Methods

- Assume translation only
- Given images I₁, I₂
- For each translation (t_x, t_y) compute

$$c(I_1, I_2, \mathbf{t}) = \sum_{i} \sum_{j} \psi(I_1(i, j), I_2(i - t_x, j - t_y))$$

Select translation that maximizes c

Depending on window size, local or global

Cross-Correlation

• Statistical definition of correlation:

 $\psi(u,v) = uv$

 Disadvantage: sensitive to local variations in image brightness

Normalized Cross-Correlation

• Normalize to eliminate brightness sensitivity:

$$\psi(u,v) = \frac{(u-\overline{u})(v-\overline{v})}{\sigma_u \sigma_v}$$

where

 $\overline{u} = \operatorname{average}(u)$ $\sigma_u = \operatorname{standard} \operatorname{deviation}(u)$

Sum of Squared Differences

More intuitive measure:

$$\psi(u,v) = -(u-v)^2$$

Negative: higher values → greater similarity
Expand:

$$-(u-v)^2 = -u^2 - v^2 + 2uv$$

Local vs. Global

Correlation with local windows not too expensive
High cost if window size = whole image

But computation looks like convolution
 – FFT to the rescue!

Fourier Transform with Translation

 $F(f(x + \Delta x, y + \Delta y)) = F(f(x, y))e^{i(\omega_x \Delta x + \omega_y \Delta y)}$

Fourier Transform with Translation

Therefore, if I₁ and I₂ differ by translation,

$$\mathcal{F}(I_1(x, y)) = \mathcal{F}(I_2(x, y))e^{i(\omega_x \Delta x + \omega_y \Delta y)}$$
$$\frac{F_1}{F_2} = e^{i(\omega_x \Delta x + \omega_y \Delta y)}$$

• So, $\mathcal{F}^{1}(F_{1}/F_{2})$ will have a peak at $(\Delta x, \Delta y)$

Phase Correlation

In practice, use cross power spectrum

Compute inverse FFT, look for peaks
[Kuglin & Hines 1975]

Phase Correlation

Advantages

- Fast computation
- Low sensitivity to global brightness changes (since equally sensitive to all frequencies)

Phase Correlation

Disadvantages

- Sensitive to white noise
- No robust version
- Translation only
 - Extensions to rotation, scale
 - But not local motion
 - Not too bad in practice with small local motions

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Correlation plus Optical Flow

 Use e.g. phase correlation to find average translation (may be large)

Use optical flow to find local motions

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Image Pyramids

 Pre-filter images to collect information at different scales

 More efficient computation, allows larger motions

Image Pyramids

Correspondence Approaches

- Optical flow
- Correlation
- Correlation + optical flow
- Any of the above, iterated (e.g. Lucas-Kanade)
- Any of the above, coarse-to-fine
- Feature matching + RANSAC

Matching features

What do we do about the "bad" matches?

<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus

Select one match, count inliers

<u>RA</u>ndom <u>SA</u>mple <u>C</u>onsensus

Select one match, count inliers

Least squares fit

Panoramic Mosaicing

Align images
 Merge overlapping regions

• Blend over too small a region: seams

Blend over too large a region: ghosting

Multiresolution Blending

- Different blending regions for different levels in a pyramid [Burt & Adelson]
 - Blend low frequencies over large regions (minimize seams due to brightness variations)
 - Blend high frequencies over small regions (minimize ghosting)

Pyramid Creation

- "Gaussian" Pyramid
- "Laplacian" Pyramid
 - Created from Gaussian pyramid by subtraction $L_i = G_i - expand(G_{i+1})$

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramid Blending

Minimum-Cost Cuts

 Instead of blending high frequencies along a straight line, blend along line of minimum differences in image intensities

Minimum-Cost Cuts

Moving object, simple blending \rightarrow blur

Minimum-Cost Cuts

Minimum-cost cut \rightarrow no blur

Poisson Image Blending

 Follow gradients of source subject to boundary conditions imposed by dest

Poisson Image Blending

Poisson Image Blending

source/destination

cloning

seamless cloning