Snakes, Strings, Balloons
and Other Active Contour Models
Goal

• Start with image and initial closed curve
• Evolve curve to lie along “important” features
 – Edges
 – Corners
 – Detected features
 – User input
Applications

• Region selection in Photoshop
• Segmentation of medical images
• Tracking
Corpus Callosum

[Davatzikos and Prince]
Corpus Callosum

[Davatzikos and Prince]
User-Visible Options

- **Initialization**: user-specified, automatic
- **Curve properties**: continuity, smoothness
- **Image features**: intensity, edges, corners, …
- **Other forces**: hard constraints, springs, attractors, repulsors, …
- **Scale**: local, multiresolution, global
Behind-the-Scenes Options

• **Framework:** energy minimization, forces acting on curve

• **Curve representation:** ideal curve, sampled, spline, implicit function

• **Evolution method:** calculus of variations, numerical differential equations, local search
Snakes: Active Contour Models

- Introduced by Kass, Witkin, and Terzopoulos
- Framework: energy minimization
 - Bending and stretching curve = more energy
 - Good features = less energy
 - Curve evolves to minimize energy
- Also “Deformable Contours”
Snakes Energy Equation

- Parametric representation of curve

\[\mathbf{v}(s) = (x(s), y(s)) \]

- Energy functional consists of three terms

\[\varepsilon = \int \left[\varepsilon_{\text{int}}(\mathbf{v}(s)) + \varepsilon_{\text{img}}(\mathbf{v}(s)) + \varepsilon_{\text{con}}(\mathbf{v}(s)) \right] ds \]
Internal Energy

\[\varepsilon_{\text{int}}(v(s)) = \left(\alpha(s) \| v_{s} (s) \|^2 + \beta(s) \| v_{ss} (s) \|^2 \right)/2 \]

- First term is “membrane” term – minimum energy when curve minimizes length (“soap bubble”)
- Second term is “thin plate” term – minimum energy when curve is smooth
Internal Energy

\[\varepsilon_{\text{int}}(\mathbf{v}(s)) = \left(\alpha(s)\|\mathbf{v}_s(s)\|^2 + \beta(s)\|\mathbf{v}_{ss}(s)\|^2 \right)/2 \]

- Control \(\alpha \) and \(\beta \) to vary between extremes
- Set \(\beta \) to 0 at a point to allow corner
- Set \(\beta \) to 0 everywhere to let curve follow sharp creases – “strings”
Image Energy

- Variety of terms give different effects
- For example,

\[\varepsilon_{img} = w \cdot |I(x, y) - I_{desired}| \]

minimizes energy at intensity \(I_{desired} \)
Edge Attraction

- Gradient-based:

\[\varepsilon_{img} = -w \cdot \| \nabla I(x, y) \|^2 \]

- Laplacian-based:

\[\varepsilon_{img} = w \cdot \| \nabla^2 I(x, y) \|^2 \]

- In both cases, can smooth with Gaussian
Corner Attraction

• Can use corner detector we saw last week
• Alternatively, let $\theta = \tan^{-1} \frac{l_y}{l_x}$ and let \mathbf{n}_\perp be a unit vector perpendicular to the gradient. Then

$$\varepsilon_{img} = w \cdot \left| \frac{\partial \theta}{\partial \mathbf{n}_\perp} \right|$$
Constraint Forces

- Spring

\[\mathcal{E}_{con} = k \cdot \left\| \mathbf{v} - \mathbf{x} \right\|^2 \]

- Repulsion

\[\mathcal{E}_{con} = \frac{k}{\left\| \mathbf{v} - \mathbf{x} \right\|^2} \]
Evolving Curve

• Computing forces on \(v \) that locally minimize energy gives differential equation for \(v \)
 – Euler-Lagrange formula
 \[
 \frac{d^2}{ds^2} \left(\frac{\partial \varepsilon}{\partial \dot{v}} \right) + \frac{d}{ds} \left(\frac{\partial \varepsilon}{\partial \ddot{v}} \right) + \frac{\partial \varepsilon}{\partial v} = 0
 \]

• Discretize \(v \): samples \((x_i, y_i)\)
 – Approximate derivatives with finite differences

• Iterative numerical solver
Other Curve Evolution Options

- Exact solution: calculus of variations
- Write equations directly in terms of forces, not energy
- Implicit equation solver
- Search neighborhood of each \((x_i, y_i)\) for pixel that minimizes energy
 - Shah & Williams paper
Variants on Snakes

• Balloons [Cohen 91]
 – Add inflation force

\[F_{infl} = k \ n(s) \]

 – Helps avoid getting stuck on small features
Balloons

Snakes

Balloons
Balloons
Other Energy or Force Terms

- Results of previously-run local algorithms
 – e.g., Canny edge detector output convolved with Gaussian
- Automatically-evolved control points
- Others...
Brain Cortex Segmentation

Add energy term for constant-color regions of a single color

Davatzikos and Prince
Brain Cortex Segmentation
Brain Cortex Segmentation

Find features and add constraints

Davatzikos and Prince
Brain Cortex Segmentation

Davatzikos and Prince
Scale

- In the simplest snakes algorithm, image features only attract locally

- Greater region of attraction: smooth image
 - Curve might not follow high-frequency detail

- Multiresolution processing
 - Start with smoothed image to attract curve
 - Finish with unsmoothed image to get details

- Heuristic for global minimum vs. local minima
Diffusion-Based Methods

• Another way to attract curve to localized features: vector flow or diffusion methods

• Example:
 – Find edges using Canny
 – For each point in entire image, compute distance to nearest edge
 – Push curve along gradient of distance field
Gradient Vector Fields

Xu and Prince
Gradient Vector Fields

Simple Snake

With Gradient Vector Field

Xu and Prince
Gradient Vector Fields

Xu and Prince