
Filtering and Edge Detection 

  



Local Neighborhoods 

• Hard to tell anything from a single pixel 
– Example: you see a reddish pixel.  Is this the object’s 

color?  Illumination?  Noise? 

• The next step in order of complexity is to look at 
local neighborhood of a pixel 



Linear Filters 

• Given an image In(x,y) generate a 
new image Out(x,y): 
– For each pixel (x,y), Out(x,y) is a specific linear 

combination of pixels in the neighborhood of In(x,y) 

• This algorithm is 
– Linear in input intensity 

– Shift invariant 



Discrete Convolution 

• This is the discrete analogue of convolution 

 

 

 

• Pattern of weights = “filter kernel” 

• Will be useful in smoothing, edge detection 
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Example: Smoothing 

Original: Mandrill Smoothed with 
Gaussian kernel 



Gaussian Filters 

• One-dimensional Gaussian 

 

 

• Two-dimensional Gaussian 
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Gaussian Filters 



Gaussian Filters 



Gaussian Filters 

• Gaussians are used because: 
– Smooth 

– Decay to zero rapidly 

– Simple analytic formula 

– Central limit theorem: limit of applying (most) filters 
multiple times is some Gaussian 

– Separable: 
        G2(x,y) = G1(x) G1(y) 



Computing Discrete Convolutions 

• What happens near edges of image? 
– Ignore (Out is smaller than In) 

– Pad with zeros (edges get dark) 

– Replicate edge pixels 

– Wrap around 

– Reflect 

– Change filter 
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Computing Discrete Convolutions 

• If In is n×n, f is m×m, takes time 
     O(m2n2) 

• OK for small filter kernels, bad for large ones 
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Fourier Transforms 

• Define Fourier transform of function f as 

 

 

• F is a function of frequency – describes how 
much of each frequency f contains 

• Fourier transform is invertible 
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Fourier Transform and Convolution 

• Fourier transform turns convolution 
into multiplication: 
 
  F (f(x) * g(x)) = F (f(x)) F (g(x)) 



Fourier Transform and Convolution 

• Useful application #1: Use frequency space to 
understand effects of filters 
– Example: Fourier transform of a Gaussian 

is a Gaussian 

– Thus: attenuates high frequencies 
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Fourier Transform and Convolution 

• Useful application #2: Efficient computation 
– Fast Fourier Transform (FFT) takes time 

      O(n log n) 

– Thus, convolution can be performed in time 
       O(n log n + m log m) 

– Greatest efficiency gains for large filters (m ~ n) 



Edge Detection 

• What do we mean by edge detection? 

• What is an edge? 



What is an Edge? 

Edge easy to find 



What is an Edge? 

Where is edge?  Single pixel wide or multiple pixels? 



What is an Edge? 

Noise: have to distinguish noise from actual edge 



What is an Edge? 

Is this one edge or two? 



What is an Edge? 

Texture discontinuity 



Formalizing Edge Detection 

• Look for strong step edges 

 

 

• One pixel wide: look for maxima in dI / dx 

• Noise rejection: smooth (with a Gaussian) 
over a neighborhood of size σ 

τ>
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dI



Canny Edge Detector 

• Smooth 

• Find derivative 

• Find maxima 

• Threshold 



Canny Edge Detector 

• First, smooth with a Gaussian of 
some width σ 



Canny Edge Detector 

• Next, find “derivative” 

• What is derivative in 2D?  Gradient: 
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Canny Edge Detector 

• Useful fact #1: differentiation 
“commutes” with convolution 

 

 

 

• Useful fact #2: Gaussian is 
separable: 
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Canny Edge Detector 

• Thus, combine first two stages of Canny: 

( ) ( )
( ) 








′∗∗

∗′∗
=








′∗

′∗
=∗∇

)()(),(
)()(),(

)()(),(
)()(),(

),(),(
11

11

11

11
2 yGxGyxf

yGxGyxf
yGxGyxf
yGxGyxf

yxGyxf



Canny Edge Detector 

Original Image Smoothed Gradient Magnitude 



Canny Edge Detector 

• Nonmaximum suppression 
– Eliminate all but local maxima in gradient magnitude 

(sqrt of sum of squares of x and y components) 

– At each pixel p look along direction of gradient: 
if either neighbor is bigger, set p to zero 

– In practice, quantize direction to 
horizontal, vertical, and two diagonals 

– Result: “thinned edge image” 



Canny Edge Detector 

• Final stage: thresholding 

• Simplest: use a single threshold 

• Better: use two thresholds 
– Find chains of touching edge pixels, all ≥ τ low 

– Each chain must contain at least one pixel ≥ τ high 

– Helps eliminate dropouts in chains, without being 
too susceptible to noise 

– “Thresholding with hysteresis” 



Canny Edge Detector 

Original Image Edges 



Other Edge Detectors 

• Can build simpler, faster edge detector by 
omitting some steps: 
– No nonmaximum suppression 

– No hysteresis in thresholding 

– Simpler filters (approx. to gradient of Gaussian) 
 

• Sobel: 

 
• Roberts: 
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Second-Derivative-Based 
Edge Detectors 

• To find local maxima in derivative, look for 
zeros in second derivative 

• Analogue in 2D: Laplacian 

 

 

• Marr-Hildreth edge detector 
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LOG 

• As before, combine Laplacian with Gaussian 
smoothing: Laplacian of Gaussian (LOG) 



LOG 

• As before, combine Laplacian with Gaussian 
smoothing: Laplacian of Gaussian (LOG) 



LOG vs. DOG 

• Laplacian of Gaussian sometimes approximated 
by Difference of Gaussians 
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Problems with 
Laplacian Edge Detectors 

• Distinguishing local minimum vs. maximum 

• Symmetric – poor performance near corners 

• Sensitive to noise 
– Higher-order derivatives = greater noise sensitivity 

– Combines information along edge, not just perpendicular 
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