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Plato said...

Ordinary objects are classified together if they
“participate’ in the same abstract Form, such
as the Form of a Human or the Form of Quartz.

Forms are proper subjects of philosophical
Investigation, for they have the highest degree
of reality.

Ordinary objects, such as humans, trees, and
stones, have a lower degree of reality than the
Forms.

Fictions, shadows, and the like have a still
lower degree of reality than ordinary objects
and so are not proper subjects of philosophical
enquiry.
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How many object categories are there
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Biederman 1987



So what does object recognition involve?




Verification: Is that a lamp?
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Detection: are there people?




|dentification: Is that Potala Palace?
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Object categorization
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Scene and context categorization
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: Canon

[Face priority AE] When a bright part of the face is too bright



ASS|sted driving

Pedestrian and car detection

meters
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* Collision warning
systems with adaptive
cruise control,

» Lane departure warning
systems,

* Rear object detection
systems,



Improvmg online s
flickr

Images

Cydral

Image & Site Search

websh@®ts

2% .
picsearch
XX

yven

. images wvigeo MNews waps more »
Goog [e swest

Moderate SafeSearch is on

Query:
STREET

Search Images ][ Search the Web ] w@

Images Showing: | Allimage sizes [l

earch
Google

altavista

Street sweeper
345 % 352 - 17k - jpg
www_town telluride co.us

Street Maintenance
A07 % 402 - 18k - jpg
www._town telluride.co.us

i et
Main Street Station SHPO Wayne Donaldson at Main Lombard Street. worlds crookedest See Street Bike (BST0-4A) Details
360 x% 392 - 30k - jpg Street ...
wiww.rmaonline.org 410 x 314 - 41k - Jpg
ohp.parks.ca.gov

500 x 387 - 89k - jpg

www_inetours_.com

&

Street Lamps
360 x 360 - 18k - jpg
syi.en.alibaba.com

Washington D_.C. Laminated Street street—nders—as—i,jpg
Map

Visually Street Riders is not nearly STREET space ring Postcards To
550 309 - 53k - jpg .
500 % 500 - 114k - jpg www._pspworld.com
[ More from img.alibaba.com ] www.dcgiftshop.com

- Space ...
550 x 309 - 52k - jpg 1000 x 563 - 87k - jpg
www.pspworld.com

Organizing photo collections
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Challenges 1: view point variation

Michelangelo 1475-1564



Challenges 2: illumination

slide credit: S. Ullman
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Challenges 4: scale




Challenges 5: deformation

Xu, Beihong 1943






Challenges 7: intra-class variation




History: early object categorization
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Turk and Pentland, 1991

Belhumeur, Hespanha, &
Kriegman, 1997

Schneiderman & Kanade 2004
Viola and Jones, 2000

Amit and Geman, 1999
LeCun et al. 1998
Belongie and Malik, 2002

Schneiderman & Kanade, 2004
Argawal and Roth, 2002
Poggio et al. 1993
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Object categorization:
the statistical viewpoint

p(zebra|image)

p(no zebré\image)

 Bayes rule:

p(zebrajimage) _  p(image|zebra)  p(zebra)
p(no zebra|image) p(image|no zebra) p(no zebra)
\ —~ _/ \ ~ /L ~ J

posterior ratio likelihood ratio prior ratio



Object categorization:
the statistical viewpoint

p(zebrajimage) _ p(image|zebra)  p(zebra)
p(no zebra|image) p(image|no zebra) p(no zebra)
\ _/ \ AN J
Y e hd
posterior ratio likelihood ratio prior ratio

e Discriminative methods model posterior

e Generative methods model likelihood and
prior



Discriminative

p(zebra|image)
p(no zebra|image)

* Direct modeling of
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Generative

 Model p(image|zebra) and p(image|no zebra)

p(image| zebra)

p(image | no zebra)

Low

Middle

High

Middle—>Low




Three main issues

 Representation
— How to represent an object category

e Learning
— How to form the classifier, given training data

* Recognition
— How the classifier I1s to be used on novel data



Representation

— Generative /
discriminative / hybrid




Representation

— Appearance only or
location and
appearance




Representation

— |nvariances
* View point
e |llumination
e Occlusion
e Scale
o Deformation
e Clutter
e etc.




Representation

— Part-based or global
w/sub-window




Representation

— Generative /
discriminative / hybrid

— Appearance only or
location and
appearance

— Invariances

— Parts or global w/sub-
window

— Use set of features or
each pixel in image
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning




Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— Methods of training: generative vs.
discriminative
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

« Manual segmentation; bounding box; image
labels; noisy labels
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Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

 Manual segmentation; bounding box; image
labels; noisy labels

— Batch/incremental (on category and image
level; user-feedback )



Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

 Manual segmentation; bounding box; image
labels; noisy labels

— Batch/incremental (on category and image
level; user-feedback)
— Training images:
 Issue of overfitting

» Negative images for discriminative methods
Priors



Learning

— Unclear how to model categories, so we
learn what distinguishes them rather than
manually specify the difference -- hence
current interest in machine learning)

— What are you maximizing? Likelihood
(Gen.) or performances on train/validation
set (Disc.)

— Level of supervision

 Manual segmentation; bounding box; image
labels; noisy labels

— Batch/incremental (on category and image
level; user-feedback)

— Training images:

 |ssue of overfitting

* Negative images for discriminative methods
— Priors



Recognition

— Scale / orientation range to search over
— Speed
— Context
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(g) P(person|viewpoint,geometry)

(1) P(person

viewpoint)

Hoiem, Efros, Herbert, 2006
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