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Plato said… 
• Ordinary objects are classified together if they 

`participate' in the same abstract Form, such 
as the Form of a Human or the Form of Quartz. 

• Forms are proper subjects of philosophical 
investigation, for they have the highest degree 
of reality. 

• Ordinary objects, such as humans, trees, and 
stones, have a lower degree of reality than the 
Forms. 

• Fictions, shadows, and the like have a still 
lower degree of reality than ordinary objects 
and so are not proper subjects of philosophical 
enquiry. 



How many object categories are there? 

Biederman 1987 



So what does object recognition involve? 



Verification: is that a lamp? 



Detection: are there people? 



Identification: is that Potala Palace? 



Object categorization 
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Scene and context categorization 

• outdoor 
• city 
• … 



Computational photography 



Assisted driving 
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Lane detection 

Pedestrian and car detection 

• Collision warning 
systems with adaptive 
cruise control,  
• Lane departure warning 
systems,  
• Rear object detection 
systems,  



Improving online search 

Query: 
STREET 

Organizing photo collections 

http://av.rds.yahoo.com/_ylt=A9ibyK4d.QpFu5UA7EFuCqMX;_ylu=X3oDMTBvcjFrYm5wBHBndANhdl9pbWdfaG9tZQRzZWMDbG9nbw--/SIG=11d79a3nr/EXP=1158433437/**http%3a//www.altavista.com/�
http://www.picsearch.com/�


Challenges 1: view point variation 

Michelangelo 1475-1564 



Challenges 2: illumination 

slide credit: S. Ullman 



Challenges 3: occlusion 

Magritte, 1957  



Challenges 4: scale 



Challenges 5: deformation 

Xu, Beihong 1943 



Challenges 6: background clutter 

Klimt, 1913 



Challenges 7: intra-class variation 



History: early object categorization 



• Turk and Pentland, 1991 
• Belhumeur, Hespanha, & 

Kriegman, 1997 
• Schneiderman & Kanade 2004 
• Viola and Jones, 2000 

• Amit and Geman, 1999 
• LeCun et al. 1998 
• Belongie and Malik, 2002 

• Schneiderman & Kanade, 2004 
• Argawal and Roth, 2002 
• Poggio et al. 1993 





Object categorization:  
the statistical viewpoint 
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• Discriminative methods model posterior 

• Generative methods model likelihood and 
prior 

 



Discriminative 

• Direct modeling of  
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Generative 
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Three main issues 

• Representation 
– How to represent an object category 
 

• Learning 
– How to form the classifier, given training data 
 

• Recognition 
– How the classifier is to be used on novel data 



Representation 
– Generative / 

discriminative / hybrid 
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Representation 
– Generative / 

discriminative / hybrid 
– Appearance only or 

location and 
appearance 

– Invariances 
• View point 
• Illumination 
• Occlusion 
• Scale 
• Deformation 
• Clutter 
• etc. 
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Representation 
– Generative / 

discriminative / hybrid 
– Appearance only or 

location and 
appearance 

– invariances 
– Parts or global w/sub-

window 
– Use set of features or 

each pixel in image 



– Unclear how to model categories, so we 
learn what distinguishes them rather than 
manually specify the difference -- hence 
current interest in machine learning 

Learning 



– Unclear how to model categories, so we 
learn what distinguishes them rather than 
manually specify the difference -- hence 
current interest in machine learning) 

– Methods of training: generative vs. 
discriminative 

Learning 



– Unclear how to model categories, so we 
learn what distinguishes them rather than 
manually specify the difference -- hence 
current interest in machine learning) 

– What are you maximizing? Likelihood 
(Gen.) or performances on train/validation 
set (Disc.) 

– Level of supervision 
• Manual segmentation; bounding box; image 

labels; noisy labels 

Learning 

Contains a motorbike 
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– Unclear how to model categories, so we 
learn what distinguishes them rather than 
manually specify the difference -- hence 
current interest in machine learning) 

– What are you maximizing? Likelihood 
(Gen.) or performances on train/validation 
set (Disc.) 

– Level of supervision 
• Manual segmentation; bounding box; image 

labels; noisy labels 
– Batch/incremental (on category and image 

level; user-feedback )  
– Training images: 

• Issue of overfitting 
• Negative images for discriminative methods 

– Priors 

Learning 



– Scale / orientation range to search over  
– Speed 
– Context 

 

Recognition 
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