
COS 318: Operating Systems

Deadlocks

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Announcements

  Project 2 due: Weds Oct 19
  Midterm Thursday Oct 27

  Sample on webpage…

  Facebook TechTalk
  The HipHop Virtual Machine
  Guilherme Ottoni *08
  Today at 5:30pm IN THIS ROOM!

  From last time:
  signal vs. broadcast
  Java: notify vs. notifyAll

Dennis Ritchie: 1941-2011

  With Bell Labs’ Ken Thompson, Ritchie helped develop
Unix, running on a DEC PDP-11, and released the first
edition of the operating system in 1971.

  Two years later, Ritchie came up with the C language,
building on B. C offered the concise syntax, functionality
and detail features necessary to make the language
work for programming an operating system. Most of
Unix's components were re-written in C, with the kernel
published the same year.

  Received the 1983 Turing Award and a 1997 US
National Medal of Technology
  both with Thompson for his work on C and Unix

3

4

Today’s Topic: Deadlock…

  Conditions for a deadlock
  Strategies to deal with deadlocks

5

Background Definitions

  Use processes and threads interchangeably
  Resources

  Preemptable: CPU (can be taken away)
  Non-preemptable: Disk, files, mutex, ... (can’t be taken away)

  Use a resource
  Request, Use, Release

  Starvation
  A process waits indefinitely

6

Deadlock

  A set of processes have a deadlock if each process is waiting
for an event that only another process in the set can cause

7

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
 eat;
 put down forks;
 think awhile;
}

Template for Philosopher

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

Naive Solution

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?

Simplest Example of Deadlock

Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleaving

P(R1)
P(R2)
P(R1) waits
P(R2) waits

R1 and R2 initially 1 (binary semaphore)

Conditions for Deadlock

  Mutually exclusive use of resources
  Binary semaphores R1 and R2

  Hold and wait
  Holding either R1 or R2 while waiting on other

  No pre-emption
  Neither R1 nor R2 are removed from their respective holding

Threads.

  Circular waiting
  Thread 0 waits for Thread 1 to V(R2) and

Thread 1 waits for Thread 0 to V(R1)

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions:

  Mutually exclusive use of resources
  Example: Allowing shared access to read-only

files (readers/writers problem)
  circular waiting

  Example: Define an ordering on resources and
acquire them in order

  hold and wait
  no pre-emption

while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

 else {(P(fork[right(me)]); P(fork[left(me)]); }
 eat;
 V(fork[left(me)]); V(fork[right(me)]);

 think awhile;
}

Circular Wait Condition

Hold and Wait Condition

while (food available)
{ P(mutex);
 while (forks [me] != 2)

 {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
 forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
 V(mutex):
 eat;
 P(mutex);
 forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)]) {
 blocking [leftneighbor(me)] = false; V(sleepy[leftneighbor(me)]); }
 if (blocking[rightneighbor(me)]) {
 blocking[rightneighbor(me)] = false; V(sleepy[rightneighbor(me)]); }
V(mutex);

 think awhile;
}

Starvation

The difference between deadlock and starvation is
subtle:
  Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

  In starvation, there does exist some execution
sequence that is favorable to the starving
process although there is no guarantee it will
ever occur.

  Rollback and Retry solutions are prone to
starvation.

  Continuous arrival of higher priority processes is
another common starvation situation.

17

Resource Allocation Graph

  Process A is holding
resource R

  Process B requests
resource S

  A cycle in resource allocation
graph ⇒ deadlock

  If A requests for S while
holding R, and B requests for
R while holding S, then

A R

B S

A S

B R

How do you deal with multiple instances of a resource?

18

An Example

  A utility program
  Copy a file from tape to disk
  Print the file to printer

  Resources
  Tape
  Disk
  Printer

  A deadlock
  A holds tape and disk, then

requests for a printer
  B holds printer, then requests

for tape and disk

A

B

Tape

19

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

  Question
  Are all conditions necessary?

20

Eliminate Competition for Resources?

  If running A to completion and
then running B, there will be no
deadlock

  Generalize this idea for all
processes?

  Is it a good idea to develop a
CPU scheduling algorithm that
causes no deadlock?

A S

B R

Previous example

S

R R

S

21

Strategies

  Ignore the problem
  It is user’s fault

  Detection and recovery
  Fix the problem afterwards

  Dynamic avoidance
  Careful allocation

  Prevention
  Negate one of the four conditions

22

Ignore the Problem

  The OS kernel locks up
  Reboot

  Device driver locks up
  Remove the device
  Restart

  An application hangs (“not responding”)
  Kill the application and restart
  Familiar with this?

  An application ran for a while and then hang
  Checkpoint the application
  Change the environment (reboot OS)
  Restart from the previous checkpoint

23

Detection and Recovery

  Detection
  Scan resource graph
  Detect cycles

  Recovery (difficult)
  Kill process/threads (can you always do this?)
  Roll back actions of deadlocked threads

  What about the tape-disk-printer example?

24

Avoidance

  Safety Condition:
  It is not deadlocked
  There is some scheduling order in which every process can

run to completion (even if all request their max resources)

  Banker’s algorithm (Dijkstra 65)
  Single resource

•  Each process has a credit
•  Total resources may not satisfy all credits
•  Track resources assigned and needed
•  Check on each allocation for safety

  Multiple resources
•  Two matrices: allocated and needed
•  See textbook for details

25

Examples (Single Resource)

Has Max
P1 2 6
P2 2 3
P3 3 5

Total: 8

Free: 1

Has Max
P1 4 6
P2 1 3
P3 2 5

Free: 1

Free: 0 Free: 3 Free: 1

Has Max
P1 2 6
P2 3 3
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 5 5

Has Max
P1 2 6
P2 0 0
P3 0 0

Free: 6

?

26

Prevention: Avoid Mutual Exclusion

  Some resources are not physically
sharable
  Printer, tape, etc

  Some can be made sharable
  Read-only files, memory, etc
  Read/write locks

  Some can be virtualized by spooling
  Use storage to virtualize a resource into

multiple resources
  Use a queue to schedule
  Does this apply to all resources?

  What about the tape-disk-printer
example?

A B

Spooling

27

Prevention: Avoid Hold and Wait

  Two-phase locking
Phase I:
  Try to lock all resources at the beginning
Phase II:
  If successful, use the resources and release them
  Otherwise, release all resources and start over

  Application
  Telephone company’s circuit switching

  What about the tape-disk-printer example?

28

Prevention: No Preemption

 Make the scheduler be aware of resource allocation
 Method

  If the system cannot satisfy a request from a process holding
resources, preempt the process and release all resources

  Schedule it only if the system satisfies all resources

 Alternative
  Preempt the process holding the requested resource

 What about the tape-disk-printer example?

29

Prevention: No Circular Wait

  Impose an order of requests for all resources
  Method

  Assign a unique id to each resource
  All requests must be in an ascending order of the ids

  A variation
  Assign a unique id to each resource
  No process requests a resource lower than what it is holding

  What about the tape-disk-printer example?
  Can we prove that this method has no circular wait?

30

Which Is Your Favorite?

  Ignore the problem
  It is user’s fault

  Detection and recovery
  Fix the problem afterwards

  Dynamic avoidance
  Careful allocation

  Prevention (Negate one of the four conditions)
  Avoid mutual exclusion
  Avoid hold and wait
  No preemption
  No circular wait

31

Tradeoffs and Applications

  Ignore the problem for applications
  It is application developers’ job to deal with their deadlocks
  OS provides mechanisms to break applications’ deadlocks

  Kernel should not have any deadlocks
  Use prevention methods
  Most popular is to apply no-circular-wait principle everywhere

Break + Deadlock-related Story Time

  The Zax

32

OpenLDAP deadlock, bug #3494
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

33

OpenLDAP deadlock, fix #1
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 if (! try_lock(A)) break;
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

34

Changes the
algorithm, but
maybe that’s
OK

OpenLDAP deadlock, fix #2
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...

 ...

 ...
 }
 }
 unlock(A)

 unlock(B)
}

35

36

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

Apache bug #42031
http://issues.apache.org/bugzilla/show_bug.cgi?id=42031
Summary: EventMPM child process freeze
Product: Apache httpd-2 Version: 2.3-HEAD
Platform: PC
OS/Version: Linux
Status: NEW
Severity: critical
Priority: P2
Component: Event MPM
AssignedTo: bugs@httpd.apache.org
ReportedBy: serai@lans-tv.com
Child process freezes with many downloading against MaxClients.

How to reproduce:

(1) configuration to httpd.conf StartServers 1 MaxClients 3 MinSpareThreads 1
MaxSpareThreads 3 ThreadsPerChild 3 MaxRequestsPerChild 0 Timeout 10 KeepAlive On
MaxKeepAliveRequests 0 KeepAliveTimeout 5

(2) put a large file "test.mpg" (about 200MB) on DocumentRoot

(3) apachectl start

(4) execute many downloading simultaneously. e.g. bash and wget:

 $ for ((i=0 ; i<20 ; i++)); do wget -b http://localhost/test.mpg; done;

 Then the child process often freezes. If not, try to download more.

(5) terminate downloading e.g. bash and wget: $ killall wget

(6) access to any file from web browser. However long you wait, server won't response.

37

Apache deadlock, bug #42031
listener_thread(...) {
 lock(timeout)
 ...
 lock(idlers)
 ...
 cond_wait (wait_for_idler, idlers)
 ...
 unlock(idlers)
 ...
 unlock(timeout)
}

worker_thread(...) {
 lock(timeout)
 ...
 unlock(timeout)
 ...
 lock (idlers)
 ...
 signal (wait_for_idler)
 ...
 unlock(idler)
 ...
}

38

39

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

40

Summary

  Deadlock conditions
  Mutual exclusion
  Hold and wait
  No preemption
  Circular chain of requests

  Strategies to deal with deadlocks
  Simpler ways are to negate one of the four conditions

