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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 



Mutual Exclusion and Critical Sections 

  A critical section is a piece of code in which a process or 
thread accesses a common (shared or global) resource. 

  Mutual Exclusion algorithms are used to avoid the 
simultaneous use of a common resource, such as a 
global variable. 

  In the buying milk example, what is the portion that 
requires mutual exclusion?   
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Conditions for a good Mutex solution: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 
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Semaphores (Dijkstra, 1965) 

  Initialization 
  Initialize a value atomically 

  P (or Down or Wait) definition 
  Atomic operation 
  Wait for semaphore to become positive and then decrement 

P(s){ 
  while (s <= 0) 
    ; 
  s--; 
} 

  V (or Up or Signal) definition 
  Atomic operation 
  Increment semaphore by 1 

V(s){ 
  s++; 
} 

The atomicity and the waiting 
can be implemented by either 
busywaiting or blocking 
solutions. 

Analogy: Think about semaphore 
value as the number of empty 
chairs at a table… 



An aside on Dijkstra… 

  Quite a personality…Avoided owning a computer for 
several decades into his career…Won the 1972 Turing 
Award… 

  Created a series of numbered memos with his thoughts 
on computing topics  
  Now Archived at U. Texas: 
  http://www.cs.utexas.edu/~EWD/ 
  Example: “A Tutorial on the Split Binary Semaphore” 

•  http://www.cs.utexas.edu/~EWD/ewd07xx/EWD703.PDF 
  Some are short proofs or papers, others are jokes or rants. 
  Go-to statement considered harmful: Published in CACM 

1968, also as EWD215… 
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Semaphores can be used for… 

  Binary semaphores can provide mutual exclusion 
(solution of critical section problem) 

  Counting semaphores can represent a resource with 
multiple instances (e.g. solving producer/consumer 
problem) 

  Signaling events  (persistent events that stay 
relevant even if nobody listening right now) 



Classic Synchronization Problems 

  There are a number of “classic” problems that represent 
a class of synchronization situations 

  Critical Section problem 
  Producer/Consumer problem 
  Reader/Writer problem 
  5 Dining Philosophers 
  Why?  Once you know the “generic” solutions, you can 

recognize other special cases in which to apply them 
(e.g., this is just a version of the reader/writer problem) 



Producer / Consumer 

Producer: 
while(whatever) 
{   
locally generate item 

fill empty buffer with item 

}   

Consumer: 
while(whatever) 
{ 

get item from full buffer 

use item 
} 



Producer / Consumer (With Counting 
Semaphores) 
Producer: 
while(whatever) 
{   
locally generate item 

fill empty buffer with item 

}   

Consumer: 
while(whatever) 
{ 

get item from full buffer 

use item 
} 

P(emptybuf); 

V(fullbuf); 

P(fullbuf); 

V(emptybuf); 

Semaphores: emptybuf initially N; fullbuf initially 0; 



Producer Consumer (Bounded Buffer) 
with Semaphores: More detail… 

  Init: emptyCount = N; fullCount = 0; mutex = 1 
 Are P(mutex)and V(mutex) necessary? 

producer() { 
  while (1) { 
    produce an item 
    P(emptyBuf); 

    P(mutex); 
    put the item in buffer 
    V(mutex); 

    V(fullBuf); 
  } 
} 

consumer() { 
  while (1) { 
    P(fullBuf); 

    P(mutex); 
    take an item from buffer 
    V(mutex); 

    V(emptyBuf); 
    consume the item 
  } 
} 
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Example: Interrupt Handler 

  A device thread works with an interrupt handler 
  What to do with shared data? 
  What if “m” is held by another thread or by itself? 

Device thread 

... 
Acquire(m); 

... 

Release(m); 
... 

Interrupt handler 

... 
Acquire(m); 

... 

Release(m); 
... 

? 
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Interrupted Thread 

… 

Interrupt 
… 

Use Semaphore to Signal  

Interrupt handler 
... 

V(s); 
... 

Device thread 
while (1) { 
  P(s); 
  Acquire(m); 
  ... 
  deal with interrupt 
  ... 
  Release(m); 
} 

Init(s,0); 



Semaphores Are Not Always Convenient 

  It is a consumer and producer problem 
  Dequeue(q) should block until q is not empty 

 Semaphores are difficult to use: orders are important 

Enqueue(q, item) 
{ 
  Acquire(mutex); 
  put item into q; 
  Release(mutex); 
} 

Dequeue(q) 
{ 
  Acquire(mutex); 
  take an item from q; 
  Release(mutex); 
  return item; 
} 

 A shared queue has Enqueue and Dequeue: 
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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 



Monitor: Hide Mutual Exclusion 

 Brinch-Hansen (73), Hoare (74) 
 Procedures are mutual exclusive 

Shared 
data 

... 

Queue of waiting processes 
trying to enter the monitor 

procedures 



Condition Variables in A Monitor 

 Wait( condition ) 
  Block on “condition” 

 Signal( condition ) 
  Wakeup a blocked process 

on “condition” 
Shared 

data 

... 
Entry queue 

procedures 

x 
y 

Queues 
associated 
with x, y 
conditions 



Monitor Abstraction 

  Encapsulates shared 
data and operations 
with mutual exclusive 
use of the object (an 
associated lock). 

  Associated Condition 
Variables with 
operations of Wait 
and Signal. 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 



Condition Variables 

  We build the monitor abstraction out of a lock 
(for the mutual exclusion) and a set of 
associated condition variables. 

  Wait on condition: releases lock held by 
caller, caller goes to sleep on condition’s 
queue.     
When awakened, it must reacquire lock. 

  Signal condition: wakes up one waiting 
thread.   

  Broadcast: wakes up all threads waiting on 
this condition. 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
while (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Producer-Consumer with Monitors 

monitor ProdCons 
  condition full, empty; 

  procedure Enter; 
  begin 
    if (buffer is full)  
      wait(full); 
    put item into buffer; 
    if (only one item)  
      signal(empty); 
  end; 

  procedure Remove; 
  begin 
    if (buffer is empty)  
      wait(empty); 
    remove an item; 
    if (buffer was full)  
      signal(full); 
  end; 

procedure Producer 
begin 
  while true do 
  begin 
    produce an item 
    ProdCons.Enter(); 
  end; 
end; 

procedure Consumer 
begin 
  while true do 
  begin 
    ProdCons.Remove(); 
    consume an item; 
  end; 
end; 
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Options of the Signaler 

  Run the signaled thread immediately and suspend the 
current one (Hoare) 
  If the signaler has other work to do, life is complex 
  It is difficult to make sure there is nothing to do, because the 

signal implementation is not aware of how it is used 
  It is easy to prove things 

  Exit the monitor (Hansen) 
  Signal must be the last statement of a monitor procedure 

  Continues its execution (Mesa) 
  Easy to implement 
  But, the condition may not be true when the awaken process 

actually gets a chance to run 
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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



Mesa Style “Monitor” (Birrell’s Paper) 

  Associate a condition variable with a mutex 
  Wait( mutex, condition ) 

  Atomically unlock the mutex and enqueued on the condition 
variable (block the thread) 

  Re-lock the lock when it is awakened 
  Signal( condition ) 

  No-op if there is no thread blocked on the condition variable 
  Wake up at least one if there are threads blocked 

  Broadcast( condition ) 
  Wake up all waiting threads 

  Original Mesa paper 
  B. Lampson and D. Redell.  Experience with processes and 

monitors in Mesa.  Comm. ACM 23, 2 (feb 1980), pp 106-117. 
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Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  if (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  if (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 

Any issues with this? 
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Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  while (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  while (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 
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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 
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The Programming Idiom 

  Waiting for a resource 

Acquire( mutex ); 
while ( no resource ) 
 wait( mutex, cond ); 

... 

(use the resource) 
...  
Release( mutex); 

  Make a resource available 

Acquire( mutex ); 
... 

(make resource available) 
... 

Signal( cond ); 
/* or Broadcast( cond ); 
Release( mutex); 



Revisit the Motivation Example 

 Does this work? 

Enqueue(Queue q,  
        Item item) { 

  Acquire(lock); 

  insert an item to q; 

  Signal(Empty); 
  Release(lock); 
} 

Item GetItem(Queue q) { 
  Item item; 

  Acquire( lock ); 
  while ( q is empty ) 
    Wait( lock, Empty); 

    remove an item; 

  Release( lock ); 
  return item; 
} 
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Condition Variables Primitives 

 Wait( mutex, cond ) 
  Enter the critical section 

(min busy wait)  
  Release mutex 
  Save state to TCB, mark 

as blocked 
  Put my TCB on cond’s 

queue 
  Exit the critical section 
  Call the scheduler 

  Waking up: 
•  Acquire mutex 
•  Resume 

  Signal( cond ) 
  Enter the critical section 

(min busy wait)  
  Wake up a TCB in cond’s 

queue 
  Exit the critical section 



More on Mesa-Style Monitor 

  Signaler continues execution 
  Waiters simply put on ready queue, with no special 

priority 
  Must reevaluate the condition 

  No constraints on when the waiting thread/process must 
run after a “signal” 

  Simple to introduce a broadcast: wake up all 
  No constrains on signaler 

  Can execute after signal call (Hansen’s cannot) 
  Do not need to relinquish control to awaken thread/process 



Evolution of Monitors 
  Brinch-Hansen (73) and Hoare Monitor (74) 

  Concept, but no implementation 
  Requires Signal to be the last statement (Hansen) 
  Requires relinquishing CPU to signaler (Hoare)  

  Mesa Language (77) 
  Monitor in language, but signaler keeps mutex and CPU 
  Waiter simply put on ready queue, with no special priority 

  Modula-2+ (84) and Modula-3 (88) 
  Explicit LOCK primitive 
  Mesa-style monitor 

  Pthreads (95) 
  Started standard effort around 1989 
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library 

  Java threads  
  Use ‘synchronized’ primitive for mutual exclusion 
  Wait() and notify() use implicit per-class condition variable 
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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 
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Example: A Simple Barrier 

  Thread A and Thread B 
want to meet at a 
particular point and then 
go on 

  How would you program 
this with a monitor? 

Thread A Thread B 
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Using Semaphores as A Barrier 

  Use two semaphore? 
 init(s1, 0); 
init(s2, 0); 

  What about more than two threads? 

Thread A 
… 

V(s1); 
P(s2); 

… 

Thread B 
… 

V(s2); 
P(s1); 

… 
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Barrier Primitive 

  Functions 
  Take a barrier variable 
  Broadcast to n-1 threads 
  When barrier variable has 

reached n, go forward 
  Hardware support on 

some parallel machines 

Thread 1 
… 

Barrier(b); 
… 

Thread n 
… 

Barrier(b); 
… 

. . . 

Barrier 
variable 
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Equivalence 

 Semaphores 
  Good for signaling 
  Not good for mutex because it is easy to introduce a bug 

 Monitors 
  Good for scheduling and mutex 
  Maybe costly for a simple signaling 
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Summary 

  Semaphores 
  Monitors 
  Mesa-style monitor and its idiom 
  Barriers 



5 Dining Philosophers 

Philosopher 0 

Philosopher 1 

Philosopher 2 

Philosopher 3 

Philosopher 4 

while(food available) 
{pick up 2 adj. forks; 
  eat; 
  put down forks; 
  think awhile; 
} 



Template for Philosopher 

while (food available) 
{          /*pick up forks*/ 

eat; 
        /*put down forks*/ 

think awhile; 
} 



Naive Solution 

while (food available) 
{          /*pick up forks*/ 

eat; 
        /*put down forks*/ 

think awhile; 
} 

P(fork[left(me)]); 
P(fork[right(me)]); 

V(fork[left(me)]); 
V(fork[right(me)]); 

Does this work? 



Simplest Example of Deadlock 

Thread 0 

P(R1) 
P(R2) 
V(R1) 
V(R2) 

Thread 1 

P(R2) 
P(R1) 
V(R2) 
V(R1) 

Interleavin
g 

P(R1) 
P(R2) 
P(R1) 

waits 
P(R2) 

waits 
R1 and R2 initially 1 (binary semaphore) 



Conditions for Deadlock 

  Mutually exclusive use of resources 
  Binary semaphores R1 and R2 

  Circular waiting 
  Thread 0 waits for Thread 1 to V(R2) and  

Thread 1 waits for Thread 0 to V(R1) 

  Hold and wait  
  Holding either R1 or R2 while waiting on other  

  No pre-emption 
  Neither R1 nor R2 are removed from their respective holding 

Threads. 



Philosophy 101 
(or why 5DP is interesting) 

  How to eat with your Fellows without causing 
Deadlock. 
  Circular arguments (the circular wait condition) 
  Not giving up on firmly held things (no preemption) 
  Infinite patience with Half-baked schemes  (hold 

some & wait for more) 
  Why Starvation exists and what we can do about it. 



Dealing with Deadlock 

It can be prevented by breaking one of the 
prerequisite conditions: 

  Mutually exclusive use of resources 
  Example: Allowing shared access to read-only 

files (readers/writers problem) 
  circular waiting 

  Example: Define an ordering on resources and 
acquire them in order  

  hold and wait   
  no pre-emption 



while (food available) 
{   if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);} 

  else {(P(fork[right(me)]); P(fork[left(me)]); } 
 eat; 
  V(fork[left(me)]); V(fork[right(me)]);   

 think awhile; 
} 

Circular Wait Condition 



Hold and Wait Condition 

while (food available) 
{  P(mutex); 
  while (forks [me] != 2)  

  {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);} 
 forks [leftneighbor(me)] --;  forks [rightneighbor(me)]--; 
 V(mutex): 
 eat; 
 P(mutex); forks [leftneighbor(me)] ++;  forks [rightneighbor(me)]++; 
 if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; V
(sleepy[leftneighbor(me)]); } 

 if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false; V
(sleepy[rightneighbor(me)]); }     V(mutex);   

     think awhile;  
} 



Starvation 

The difference between deadlock and starvation is 
subtle: 
  Once a set of processes are deadlocked, there is 

no future execution sequence that can get them 
out of it. 

  In starvation, there does exist some execution 
sequence that is favorable to the starving 
process although there is no guarantee it will 
ever occur. 

  Rollback and Retry solutions are prone to 
starvation. 

  Continuous arrival of higher priority processes is 
another common starvation situation. 



5DP - Monitor Style 

Boolean eating [5]; 
Lock forkMutex; 
Condition forksAvail; 

void PickupForks (int i) { 
 forkMutex.Acquire( ); 
 while ( eating[(i-1)%5] || eating
[(i+1)%5] )  
      forksAvail.Wait(&forkMutex); 
 eating[i] = true; 
 forkMutex.Release( ); 

} 

void PutdownForks (int i) { 
 forkMutex.Acquire( ); 
 eating[i] = false; 
 forksAvail.Broadcast
(&forkMutex); 
 forkMutex.Release( ); 

} 



What about this? 

while (food available) 
{  forkMutex.Acquire( ); 
  while (forks [me] != 2) {blocking[me]=true; 

  forkMutex.Release( ); sleep( ); forkMutex.Acquire( );} 
 forks [leftneighbor(me)]--;  forks [rightneighbor(me)]--; 
  forkMutex.Release( ): 
 eat; 
  forkMutex.Acquire( ); 
 forks[leftneighbor(me)] ++;  forks [rightneighbor(me)]++; 
 if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)]) 
         wakeup ( );  forkMutex.Release( ); 

 think awhile; 
} 



Classic Synchronization Problems 

  There are a number of “classic” problems that represent 
a class of synchronization situations 

  Critical Section problem 
  Producer/Consumer problem 
  Reader/Writer problem 
  5 Dining Philosophers 
  Why?  Once you know the “generic” solutions, you can 

recognize other special cases in which to apply them 
(e.g., this is just a version of the reader/writer problem) 



Readers/Writers Problem 

Synchronizing access to a file or data record in a database 
such that any number of threads requesting read-only 
access are allowed but only one thread requesting write 
access is allowed, excluding all readers. 


