
COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom

Mutual Exclusion and Critical Sections

  A critical section is a piece of code in which a process or
thread accesses a common (shared or global) resource.

  Mutual Exclusion algorithms are used to avoid the
simultaneous use of a common resource, such as a
global variable.

  In the buying milk example, what is the portion that
requires mutual exclusion?

3

Conditions for a good Mutex solution:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

4

5

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

6

Semaphores (Dijkstra, 1965)

  Initialization
  Initialize a value atomically

  P (or Down or Wait) definition
  Atomic operation
  Wait for semaphore to become positive and then decrement

P(s){
 while (s <= 0)
 ;
 s--;
}

  V (or Up or Signal) definition
  Atomic operation
  Increment semaphore by 1

V(s){
 s++;
}

The atomicity and the waiting
can be implemented by either
busywaiting or blocking
solutions.

Analogy: Think about semaphore
value as the number of empty
chairs at a table…

An aside on Dijkstra…

  Quite a personality…Avoided owning a computer for
several decades into his career…Won the 1972 Turing
Award…

  Created a series of numbered memos with his thoughts
on computing topics
  Now Archived at U. Texas:
  http://www.cs.utexas.edu/~EWD/
  Example: “A Tutorial on the Split Binary Semaphore”

•  http://www.cs.utexas.edu/~EWD/ewd07xx/EWD703.PDF
  Some are short proofs or papers, others are jokes or rants.
  Go-to statement considered harmful: Published in CACM

1968, also as EWD215…

7

Semaphores can be used for…

  Binary semaphores can provide mutual exclusion
(solution of critical section problem)

  Counting semaphores can represent a resource with
multiple instances (e.g. solving producer/consumer
problem)

  Signaling events (persistent events that stay
relevant even if nobody listening right now)

Classic Synchronization Problems

  There are a number of “classic” problems that represent
a class of synchronization situations

  Critical Section problem
  Producer/Consumer problem
  Reader/Writer problem
  5 Dining Philosophers
  Why? Once you know the “generic” solutions, you can

recognize other special cases in which to apply them
(e.g., this is just a version of the reader/writer problem)

Producer / Consumer

Producer:
while(whatever)
{
locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

Producer / Consumer (With Counting
Semaphores)
Producer:
while(whatever)
{
locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

P(emptybuf);

V(fullbuf);

P(fullbuf);

V(emptybuf);

Semaphores: emptybuf initially N; fullbuf initially 0;

Producer Consumer (Bounded Buffer)
with Semaphores: More detail…

  Init: emptyCount = N; fullCount = 0; mutex = 1
 Are P(mutex)and V(mutex) necessary?

producer() {
 while (1) {
 produce an item
 P(emptyBuf);

 P(mutex);
 put the item in buffer
 V(mutex);

 V(fullBuf);
 }
}

consumer() {
 while (1) {
 P(fullBuf);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyBuf);
 consume the item
 }
}

13

Example: Interrupt Handler

  A device thread works with an interrupt handler
  What to do with shared data?
  What if “m” is held by another thread or by itself?

Device thread

...
Acquire(m);

...

Release(m);
...

Interrupt handler

...
Acquire(m);

...

Release(m);
...

?

14

Interrupted Thread

…

Interrupt
…

Use Semaphore to Signal

Interrupt handler
...

V(s);
...

Device thread
while (1) {
 P(s);
 Acquire(m);
 ...
 deal with interrupt
 ...
 Release(m);
}

Init(s,0);

Semaphores Are Not Always Convenient

  It is a consumer and producer problem
  Dequeue(q) should block until q is not empty

 Semaphores are difficult to use: orders are important

Enqueue(q, item)
{
 Acquire(mutex);
 put item into q;
 Release(mutex);
}

Dequeue(q)
{
 Acquire(mutex);
 take an item from q;
 Release(mutex);
 return item;
}

 A shared queue has Enqueue and Dequeue:

16

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

17

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

Monitor: Hide Mutual Exclusion

 Brinch-Hansen (73), Hoare (74)
 Procedures are mutual exclusive

Shared
data

...

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

 Wait(condition)
  Block on “condition”

 Signal(condition)
  Wakeup a blocked process

on “condition”
Shared

data

...
Entry queue

procedures

x
y

Queues
associated
with x, y
conditions

Monitor Abstraction

  Encapsulates shared
data and operations
with mutual exclusive
use of the object (an
associated lock).

  Associated Condition
Variables with
operations of Wait
and Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

Condition Variables

  We build the monitor abstraction out of a lock
(for the mutual exclusion) and a set of
associated condition variables.

  Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
queue.
When awakened, it must reacquire lock.

  Signal condition: wakes up one waiting
thread.

  Broadcast: wakes up all threads waiting on
this condition.

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Producer-Consumer with Monitors

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

procedure Producer
begin
 while true do
 begin
 produce an item
 ProdCons.Enter();
 end;
end;

procedure Consumer
begin
 while true do
 begin
 ProdCons.Remove();
 consume an item;
 end;
end;

29

Options of the Signaler

  Run the signaled thread immediately and suspend the
current one (Hoare)
  If the signaler has other work to do, life is complex
  It is difficult to make sure there is nothing to do, because the

signal implementation is not aware of how it is used
  It is easy to prove things

  Exit the monitor (Hansen)
  Signal must be the last statement of a monitor procedure

  Continues its execution (Mesa)
  Easy to implement
  But, the condition may not be true when the awaken process

actually gets a chance to run

30

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

Mesa Style “Monitor” (Birrell’s Paper)

  Associate a condition variable with a mutex
  Wait(mutex, condition)

  Atomically unlock the mutex and enqueued on the condition
variable (block the thread)

  Re-lock the lock when it is awakened
  Signal(condition)

  No-op if there is no thread blocked on the condition variable
  Wake up at least one if there are threads blocked

  Broadcast(condition)
  Wake up all waiting threads

  Original Mesa paper
  B. Lampson and D. Redell. Experience with processes and

monitors in Mesa. Comm. ACM 23, 2 (feb 1980), pp 106-117.

32

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 if (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 if (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

Any issues with this?

33

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 while (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 while (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

34

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

35

The Programming Idiom

  Waiting for a resource

Acquire(mutex);
while (no resource)
 wait(mutex, cond);

...

(use the resource)
...
Release(mutex);

  Make a resource available

Acquire(mutex);
...

(make resource available)
...

Signal(cond);
/* or Broadcast(cond);
Release(mutex);

Revisit the Motivation Example

 Does this work?

Enqueue(Queue q,
 Item item) {

 Acquire(lock);

 insert an item to q;

 Signal(Empty);
 Release(lock);
}

Item GetItem(Queue q) {
 Item item;

 Acquire(lock);
 while (q is empty)
 Wait(lock, Empty);

 remove an item;

 Release(lock);
 return item;
}

37

Condition Variables Primitives

 Wait(mutex, cond)
  Enter the critical section

(min busy wait)
  Release mutex
  Save state to TCB, mark

as blocked
  Put my TCB on cond’s

queue
  Exit the critical section
  Call the scheduler

  Waking up:
•  Acquire mutex
•  Resume

  Signal(cond)
  Enter the critical section

(min busy wait)
  Wake up a TCB in cond’s

queue
  Exit the critical section

More on Mesa-Style Monitor

  Signaler continues execution
  Waiters simply put on ready queue, with no special

priority
  Must reevaluate the condition

  No constraints on when the waiting thread/process must
run after a “signal”

  Simple to introduce a broadcast: wake up all
  No constrains on signaler

  Can execute after signal call (Hansen’s cannot)
  Do not need to relinquish control to awaken thread/process

Evolution of Monitors
  Brinch-Hansen (73) and Hoare Monitor (74)

  Concept, but no implementation
  Requires Signal to be the last statement (Hansen)
  Requires relinquishing CPU to signaler (Hoare)

  Mesa Language (77)
  Monitor in language, but signaler keeps mutex and CPU
  Waiter simply put on ready queue, with no special priority

  Modula-2+ (84) and Modula-3 (88)
  Explicit LOCK primitive
  Mesa-style monitor

  Pthreads (95)
  Started standard effort around 1989
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library

  Java threads
  Use ‘synchronized’ primitive for mutual exclusion
  Wait() and notify() use implicit per-class condition variable

40

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

41

Example: A Simple Barrier

  Thread A and Thread B
want to meet at a
particular point and then
go on

  How would you program
this with a monitor?

Thread A Thread B

42

Using Semaphores as A Barrier

  Use two semaphore?
 init(s1, 0);
init(s2, 0);

  What about more than two threads?

Thread A
…

V(s1);
P(s2);

…

Thread B
…

V(s2);
P(s1);

…

43

Barrier Primitive

  Functions
  Take a barrier variable
  Broadcast to n-1 threads
  When barrier variable has

reached n, go forward
  Hardware support on

some parallel machines

Thread 1
…

Barrier(b);
…

Thread n
…

Barrier(b);
…

. . .

Barrier
variable

44

Equivalence

 Semaphores
  Good for signaling
  Not good for mutex because it is easy to introduce a bug

 Monitors
  Good for scheduling and mutex
  Maybe costly for a simple signaling

45

Summary

  Semaphores
  Monitors
  Mesa-style monitor and its idiom
  Barriers

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
 eat;
 put down forks;
 think awhile;
}

Template for Philosopher

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

Naive Solution

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?

Simplest Example of Deadlock

Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleavin
g

P(R1)
P(R2)
P(R1)

waits
P(R2)

waits
R1 and R2 initially 1 (binary semaphore)

Conditions for Deadlock

  Mutually exclusive use of resources
  Binary semaphores R1 and R2

  Circular waiting
  Thread 0 waits for Thread 1 to V(R2) and

Thread 1 waits for Thread 0 to V(R1)

  Hold and wait
  Holding either R1 or R2 while waiting on other

  No pre-emption
  Neither R1 nor R2 are removed from their respective holding

Threads.

Philosophy 101
(or why 5DP is interesting)

  How to eat with your Fellows without causing
Deadlock.
  Circular arguments (the circular wait condition)
  Not giving up on firmly held things (no preemption)
  Infinite patience with Half-baked schemes (hold

some & wait for more)
  Why Starvation exists and what we can do about it.

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions:

  Mutually exclusive use of resources
  Example: Allowing shared access to read-only

files (readers/writers problem)
  circular waiting

  Example: Define an ordering on resources and
acquire them in order

  hold and wait
  no pre-emption

while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

 else {(P(fork[right(me)]); P(fork[left(me)]); }
 eat;
 V(fork[left(me)]); V(fork[right(me)]);

 think awhile;
}

Circular Wait Condition

Hold and Wait Condition

while (food available)
{ P(mutex);
 while (forks [me] != 2)

 {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
 forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
 V(mutex):
 eat;
 P(mutex); forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; V
(sleepy[leftneighbor(me)]); }

 if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false; V
(sleepy[rightneighbor(me)]); } V(mutex);

 think awhile;
}

Starvation

The difference between deadlock and starvation is
subtle:
  Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

  In starvation, there does exist some execution
sequence that is favorable to the starving
process although there is no guarantee it will
ever occur.

  Rollback and Retry solutions are prone to
starvation.

  Continuous arrival of higher priority processes is
another common starvation situation.

5DP - Monitor Style

Boolean eating [5];
Lock forkMutex;
Condition forksAvail;

void PickupForks (int i) {
 forkMutex.Acquire();
 while (eating[(i-1)%5] || eating
[(i+1)%5])
 forksAvail.Wait(&forkMutex);
 eating[i] = true;
 forkMutex.Release();

}

void PutdownForks (int i) {
 forkMutex.Acquire();
 eating[i] = false;
 forksAvail.Broadcast
(&forkMutex);
 forkMutex.Release();

}

What about this?

while (food available)
{ forkMutex.Acquire();
 while (forks [me] != 2) {blocking[me]=true;

 forkMutex.Release(); sleep(); forkMutex.Acquire();}
 forks [leftneighbor(me)]--; forks [rightneighbor(me)]--;
 forkMutex.Release():
 eat;
 forkMutex.Acquire();
 forks[leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)])
 wakeup (); forkMutex.Release();

 think awhile;
}

Classic Synchronization Problems

  There are a number of “classic” problems that represent
a class of synchronization situations

  Critical Section problem
  Producer/Consumer problem
  Reader/Writer problem
  5 Dining Philosophers
  Why? Once you know the “generic” solutions, you can

recognize other special cases in which to apply them
(e.g., this is just a version of the reader/writer problem)

Readers/Writers Problem

Synchronizing access to a file or data record in a database
such that any number of threads requesting read-only
access are allowed but only one thread requesting write
access is allowed, excluding all readers.

