
COS 318: Operating Systems

Mutex Implementation

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Announcements

  Project 1 due tomorrow.
  Tonight’s precept is open questioning.

  A few words about Independent Work: Why you should
strongly consider starting it during your junior year:
 1) Helps you get internships between jr and sr year.
 2) Improves the detail of the reference letter a prof can
write for you during fall of your senior year.
 3) Let’s us nominate you for awards with fall deadlines
like this one:
 http://cra.org/awards/undergrad/

2

Roadmap: Where are we & how did we
get here?
  OS: Abstractions & resource management

  1 Abstraction: Process
  1 type of resource management: CPU scheduling

  Scheduling processes involves preempting and
interleaving them.

  This arbitrary interleaving requires special thought about
critical sections and mutual exclusion

  And that is how we got to the discussion of how to buy
milk.

  Today: How to implement Mutual Exclusion?

3

Mutual Exclusion and Critical Sections

  A critical section is a piece of code in which a process or
thread accesses a common (shared or global) resource.

  Mutual Exclusion algorithms are used to avoid the
simultaneous use of a common resource, such as a
global variable.

  In the buying milk example, what is the portion that
requires mutual exclusion?

4

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Pictorially…

Conditions for a good Mutex solution:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

6

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

Simple, user-level lock variables

if (!lock) {!
!lock = 1;!
!{critical section}!
!lock = 0;!
}!

8

Problem?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

10

Use and Disable Interrupts

 Use interrupts
  Implement preemptive CPU scheduling
  Internal events to relinquish the CPU
  External events to reschedule the CPU

 Disable interrupts
  Introduce uninterruptible code regions
  Think sequentially most of the time
  Delay handling of external events

CPU

Memory Interrupt

DisableInt()
.
.
.

EnableInt()

Uninterruptible
region

A Simple Way to Use Disabling Interrupts

  Issues with this approach?

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

Acquire()

 critical section?

Release()

12

One More Try

  Issues with this approach?

Acquire(lock) {
 disable interrupts;
 while (lock.value != FREE)

 ;
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = FREE;
 enable interrupts;
}

13

Another Try

  Does this fix the “wait forever” problem?

Acquire(lock) {
 disable interrupts;
 while (lock.value != FREE){
 enable interrupts;
 disable interrupts;
 }
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = FREE;
 enable interrupts;
}

14

Yet Another Try

  Any issues with this approach?

Acquire(lock) {
 disable interrupts;
 while (lock.value == BUSY)
 {
 enqueue me for lock;
 Yield();
 }
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 }
 lock.value = FREE;
 enable interrupts;
}

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

Strict Alternation

16

Which condition does Strict Alternation
violate?:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

17

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum calls this “simpler than Dekker’s”, but still…

19

Atomic Memory Load orStore
  Assumed in in textbook (e.g. Peterson’s solution)

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. on
Computer Systems, Feb 1987.
  5 writes and 2 reads

int turn;
int interested[N];

void enter_region(int process)
{
 int other;

 other = 1 – process;
 interested[process] = TRUE;
 turn = process;
 while(turn == process && interested[other] == TRUE);
}

Current machines make promises
regarding ordering and atomicity of
individual reads or writes at the memory
controller. But ordering between unrelated
reads and writes is more difficult

Other Issues: Memory reference ordering
between CPUs in a multiprocessor…

  CPUs can make promises about memory ordering
within one processor core. But harder to make
promises across the whole system.
=> Create special instructions with stronger ordering promises.

20

One last tragic example……

  What is programmer trying to do here?
  What could go wrong?

21

HARDWARE SUPPORT FOR
MUTUAL EXCLUSION

22

23

Atomic Read-Modify-Write Instructions

  Basic Abstraction: Test and Set (TAS)
  Assembly instruction that operates on a memory address
  TAS memaddress, status
  Or “TAS Reg7 reg4” where Reg7 contains a memory address,

and reg4 is the register where you want the result placed

  Read memaddress. If contents == 1, that’s it.
  If contents == 0, atomically set to 1.

  Read and write are performed together in a manner that
looks atomic to all processes.

  Return (ie place in a register)
  If successfully set, return 1 (you just were able to obtain the

lock)
  If not successfully set, return 0 (you were unable to obtain the

lock)

24

Other Atomic Read-Modify-Write
Instructions
  LOCK prefix in x86

  Make a specific set instructions atomic
  Together with BTS to implement Test&Set

  Exchange (xchg, x86 architecture)
  Swap register and memory
  Atomic (even without LOCK)

  Fetch&Add or Fetch&Op
  Atomic instructions for large shared memory multiprocessor

systems
  Load link and conditional store

  Read value in one instruction (load link)
  Do some operations;
  When store, check if value has been modified. If not, ok;

otherwise, jump back to start

25

A Simple Solution with Test&Set

  Define TAS(lock)
  If successfully set, return 1;
  Otherwise, return 0;

  Any issues with the following solution?

Acquire(lock) {
 while (!TAS(lock.value))
 ;
}

Release(lock) {
 lock.value = 0;
}

26

What About This Solution?

 How long does the “busy wait” take?

Acquire(lock) {
 while (!TAS(lock.guard))
 ;
 if (lock.value) {
 enqueue the thread;
 block and lock.guard = 0;
 } else {
 lock.value = 1;
 lock.guard = 0;
 }
}

Release(lock) {
 while (!TAS(lock.guard))
 ;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 } else
 lock.value = 0;
 lock.guard = 0;
}

27

Example: Protect a Shared Variable

  Acquire(mutex) system call
  Pushing parameter, sys call # onto stack
  Generating trap/interrupt to enter kernel
  Jump to appropriate function in kernel
  Verify process passed in valid pointer to mutex
  Minimal spinning
  Block and unblock process if needed
  Get the lock

  Executing “count++;”
  Release(mutex) system call

Acquire(lock)
count++;
Release(lock)

28

Available Primitives and Operations

 Test-and-set
  Works at either user or kernel

 System calls for block/unblock
  Block takes some token and goes to sleep
  Unblock “wakes up” a waiter on token

29

Block and Unblock System Calls

Block(lock)
  Spin on lock.guard
  Save the context to TCB
  Enqueue TCB to lock.q
  Clear lock.guard
  Call scheduler

  Questions
  Do they work?
  Can we get rid of the spin lock?

Unblock(lock)
  Spin on lock.guard
  Dequeue a TCB from lock.q
  Put TCB in ready queue
  Clear lock.guard

Always Block

  What are the issues with this approach?

Acquire(lock) {
 while (!TAS(lock.value))
 Block(lock);
}

Release(lock) {
 lock.value = 0;
 Unblock(lock);
}

31

Always Spin

  Two spinning loops in Acquire()?

Acquire(lock) {
 while (!TAS(lock.value))
 while (lock.value)
 ;
}

Release(lock) {
 lock.value = 0;
}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

COMPETITIVE SPINNING

32

33

Optimal Algorithms

  What is the optimal solution to spin vs. block?
  Know the future
  Exactly when to spin and when to block

  But, we don’t know the future
  There is no online optimal algorithm

  Offline optimal algorithm
  Afterwards, derive exactly when to block or spin (“what if”)
  Useful to compare against online algorithms

Classic Competitive Algorithms Example

  When to rent skis and when to buy?

34

35

Competitive Algorithms

  An algorithm is c-competitive if
for every input sequence σ

 CA(σ) ≤ c × Copt(σ) + k

  c is a constant
  CA(σ) is the cost incurred by algorithm A in processing σ
  Copt(σ) is the cost incurred by the optimal algorithm in

processing σ

  What we want is to have c as small as possible
  Deterministic
  Randomized

Constant Competitive Algorithms

  Spin up to N times if the lock is held by another thread
  If the lock is still held after spinning N times, block

  If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Acquire(lock, N) {
 int i;

 while (!TAS(lock.value)) {
 i = N;
 while (!lock.value && i)
 i--;

 if (!i)
 Block(lock);
 }
}

37

Approximate Optimal Online Algorithms

  Main idea
  Use past to predict future

  Approach
  Random walk

•  Decrement N by a unit if the last Acquire() blocked
•  Increment N by a unit if the last Acquire() didn’t block

  Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

  Theoretical results
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))

The competitive factor is about 1.58.

38

Empirical Results

A. Karlin, K. Li, M. Manasse, and S. Owicki,
“Empirical Studies of Competitive Spinning
for a Shared-Memory Multiprocessor,”
Proceedings of the 13th ACM Symposium
on Operating Systems Principle, 1991.

39

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

40

Summary

  Disabling interrupts for mutex
  There are many issues
  When making it work, it works for only uniprocessors

  Atomic instruction support for mutex
  Atomic load and stores are not good enough
  Test&set and other instructions are the way to go

  Competitive spinning
  Spin at the user level most of the time
  Make no system calls in the absence of contention
  Have more threads than processors

