
COS 318: Operating Systems 

Mutex Implementation 

Prof. Margaret Martonosi 
Computer Science Department 
Princeton University 

http://www.cs.princeton.edu/courses/archive/fall11/cos318/ 



Announcements   

  Project 1 due tomorrow. 
  Tonight’s precept is open questioning. 

  A few words about Independent Work: Why you should 
strongly consider starting it during your junior year: 
 1)  Helps you get internships between jr and sr year. 
 2) Improves the detail of the reference letter a prof can 
write for you during fall of your senior year. 
 3) Let’s us nominate you for awards with fall deadlines 
like this one: 
  http://cra.org/awards/undergrad/ 
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Roadmap: Where are we & how did we 
get here? 
  OS: Abstractions & resource management 

  1 Abstraction: Process 
  1 type of resource management: CPU scheduling 

  Scheduling processes involves preempting and 
interleaving them. 

  This arbitrary interleaving requires special thought about 
critical sections and mutual exclusion 

  And that is how we got to the discussion of how to buy 
milk. 

  Today: How to implement Mutual Exclusion? 
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Mutual Exclusion and Critical Sections 

  A critical section is a piece of code in which a process or 
thread accesses a common (shared or global) resource. 

  Mutual Exclusion algorithms are used to avoid the 
simultaneous use of a common resource, such as a 
global variable. 

  In the buying milk example, what is the portion that 
requires mutual exclusion?   
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Pictorially… 



Conditions for a good Mutex solution: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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Mutex: Implementation Possibilities 

  Proposals for achieving mutual exclusion: 

  Lock variables 
  Disabling interrupts 
  Strict alternation 
  Peterson's solution 
  The TSL instruction 



Simple, user-level lock variables 

if (!lock) {!
!lock = 1;!
!{critical section}!
!lock = 0;!
}!
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Problem? 
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Mutex: Implementation Possibilities 

  Proposals for achieving mutual exclusion: 

  Lock variables 
  Disabling interrupts 
  Strict alternation 
  Peterson's solution 
  The TSL instruction 
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Use and Disable Interrupts 

 Use interrupts 
  Implement preemptive CPU scheduling 
  Internal events to relinquish the CPU 
  External events to reschedule the CPU 

 Disable interrupts 
  Introduce uninterruptible code regions 
  Think sequentially most of the time 
  Delay handling of external events 

CPU 

Memory Interrupt 

DisableInt() 
. 
. 
. 

EnableInt() 

Uninterruptible 
region 



A Simple Way to Use Disabling Interrupts 

  Issues with this approach? 

Acquire() { 
    disable interrupts; 
} 

Release() { 
    enable interrupts; 
} 

Acquire() 

  critical section? 

Release() 
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One More Try 

  Issues with this approach? 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != FREE) 

 ; 
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = FREE; 
  enable interrupts; 
} 
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Another Try 

  Does this fix the “wait forever” problem?  

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != FREE){ 
    enable interrupts; 
    disable interrupts; 
    } 
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = FREE; 
  enable interrupts; 
} 
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Yet Another Try 

  Any issues with this approach? 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value == BUSY) 
  { 
    enqueue me for lock; 
    Yield(); 
  }  
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  if (anyone in queue) { 
    dequeue a thread; 
    make it ready; 
  }  
  lock.value = FREE; 
  enable interrupts; 
} 
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Mutex: Implementation Possibilities 

  Proposals for achieving mutual exclusion: 

  Lock variables 
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Strict Alternation 
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Which condition does Strict Alternation 
violate?: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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Peterson's Solution 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 

Tanenbaum calls this “simpler than Dekker’s”, but still… 
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Atomic Memory Load orStore 
  Assumed in in textbook (e.g. Peterson’s solution) 

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. on 
Computer Systems, Feb 1987. 
  5 writes and 2 reads 

int turn; 
int interested[N]; 

void enter_region(int process) 
{ 
    int other; 

    other = 1 – process; 
    interested[process] = TRUE; 
    turn = process; 
    while(turn == process && interested[other] == TRUE); 
} 

Current machines make promises 
regarding ordering and atomicity of 
individual reads or writes at the memory 
controller.  But ordering between unrelated 
reads and writes is more difficult 



Other Issues: Memory reference ordering 
between CPUs in a multiprocessor… 

  CPUs can make promises about memory ordering 
within one processor core.  But harder to make 
promises across the whole system. 
=> Create special instructions with stronger ordering promises. 
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One last tragic example…… 

  What is programmer trying to do here? 
  What could go wrong? 
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HARDWARE SUPPORT FOR 
MUTUAL EXCLUSION 
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Atomic Read-Modify-Write Instructions 

  Basic Abstraction: Test and Set (TAS) 
  Assembly instruction that operates on a memory address 
  TAS memaddress, status 
  Or “TAS Reg7 reg4” where Reg7 contains a memory address, 

and reg4 is the register where you want the result placed 

  Read memaddress.  If contents == 1, that’s it. 
  If contents == 0, atomically set to 1. 

  Read and write are performed together in a manner that 
looks atomic to all processes. 

  Return (ie place in a register) 
  If successfully set, return 1 (you just were able to obtain the 

lock) 
  If not successfully set, return 0 (you were unable to obtain the 

lock) 
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Other Atomic Read-Modify-Write 
Instructions 
  LOCK prefix in x86 

  Make a specific set instructions atomic 
  Together with BTS to implement Test&Set 

  Exchange (xchg, x86 architecture) 
  Swap register and memory 
  Atomic (even without LOCK) 

  Fetch&Add or Fetch&Op 
  Atomic instructions for large shared memory multiprocessor 

systems 
  Load link and conditional store  

  Read value in one instruction (load link) 
  Do some operations; 
  When store, check if value has been modified.  If not, ok; 

otherwise, jump back to start 
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A Simple Solution with Test&Set 

  Define TAS(lock) 
  If successfully set, return 1; 
  Otherwise, return 0; 

  Any issues with the following solution? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    ; 
} 

Release(lock) { 
  lock.value = 0; 
} 



26 

What About This Solution? 

 How long does the “busy wait” take? 

Acquire(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (lock.value) { 
    enqueue the thread; 
    block and lock.guard = 0; 
  } else { 
    lock.value = 1; 
    lock.guard = 0; 
  } 
} 

Release(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (anyone in queue) { 
    dequeue a thread; 
    make it ready; 
  } else 
    lock.value = 0; 
  lock.guard = 0; 
} 
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Example: Protect a Shared Variable 

  Acquire(mutex) system call 
  Pushing parameter, sys call # onto stack 
  Generating trap/interrupt to enter kernel 
  Jump to appropriate function in kernel 
  Verify process passed in valid pointer to mutex 
  Minimal spinning 
  Block and unblock process if needed 
  Get the lock 

  Executing “count++;” 
  Release(mutex) system call 

Acquire(lock) 
count++; 
Release(lock) 
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Available Primitives and Operations 

 Test-and-set 
  Works at either user or kernel 

 System calls for block/unblock 
  Block takes some token and goes to sleep 
  Unblock “wakes up” a waiter on token 
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Block and Unblock System Calls 

Block( lock ) 
  Spin on lock.guard 
  Save the context to TCB 
  Enqueue TCB to lock.q 
  Clear lock.guard 
  Call scheduler 

  Questions 
  Do they work? 
  Can we get rid of the spin lock? 

Unblock( lock ) 
  Spin on lock.guard 
  Dequeue a TCB from lock.q 
  Put TCB in ready queue 
  Clear lock.guard 



Always Block 

  What are the issues with this approach? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    Block( lock ); 
} 

Release(lock) { 
  lock.value = 0; 
  Unblock( lock ); 
} 
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Always Spin 

  Two spinning loops in Acquire()? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    while (lock.value) 
    ; 
} 

Release(lock) { 
  lock.value = 0; 
} 

CPU CPU 

L1 $ L1 $ 

L2 $ 

Multicore 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

… … 

Memory 

SMP 

TAS 
TAS 



COMPETITIVE SPINNING 
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Optimal Algorithms 

  What is the optimal solution to spin vs. block? 
  Know the future 
  Exactly when to spin and when to block 

  But, we don’t know the future 
  There is no online optimal algorithm 

  Offline optimal algorithm 
  Afterwards, derive exactly when to block or spin (“what if”) 
  Useful to compare against online algorithms 



Classic Competitive Algorithms Example 

  When to rent skis and when to buy? 
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Competitive Algorithms 

  An algorithm is c-competitive if  
for every input sequence σ 

                           CA(σ) ≤ c × Copt(σ) + k 

  c is a constant 
  CA(σ) is the cost incurred by algorithm A in processing σ 
  Copt(σ) is the cost incurred by the optimal algorithm in 

processing σ 

  What we want is to have c as small as possible 
  Deterministic 
  Randomized 



Constant Competitive Algorithms 

  Spin up to N times if the lock is held by another thread 
  If the lock is still held after spinning N times, block 

  If spinning N times is equal to the context-switch time, what is the 
competitive factor of the algorithm? 

Acquire(lock, N) { 
  int i; 

  while (!TAS(lock.value)) { 
    i = N; 
    while (!lock.value && i) 
      i--; 

    if (!i)  
      Block(lock); 
  } 
} 
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Approximate Optimal Online Algorithms 

  Main idea 
  Use past to predict future 

  Approach 
  Random walk 

•  Decrement N by a unit if the last Acquire() blocked 
•  Increment N by a unit if the last Acquire() didn’t block 

  Recompute N each time for each Acquire() based on some 
lock-waiting distribution for each lock 

  Theoretical results 
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))  

The competitive factor is about 1.58. 
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Empirical Results 

A. Karlin, K. Li, M. Manasse, and S. Owicki, 
“Empirical Studies of Competitive Spinning 
for a Shared-Memory Multiprocessor,” 
Proceedings of the 13th ACM Symposium 
on Operating Systems Principle, 1991. 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 
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Summary 

  Disabling interrupts for mutex 
  There are many issues 
  When making it work, it works for only uniprocessors 

  Atomic instruction support for mutex 
  Atomic load and stores are not good enough 
  Test&set and other instructions are the way to go 

  Competitive spinning 
  Spin at the user level most of the time 
  Make no system calls in the absence of contention 
  Have more threads than processors 


