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Announcements   

  Project 1 due tomorrow. 
  Tonight’s precept is open questioning. 

  A few words about Independent Work: Why you should 
strongly consider starting it during your junior year: 
 1)  Helps you get internships between jr and sr year. 
 2) Improves the detail of the reference letter a prof can 
write for you during fall of your senior year. 
 3) Let’s us nominate you for awards with fall deadlines 
like this one: 
  http://cra.org/awards/undergrad/ 
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Roadmap: Where are we & how did we 
get here? 
  OS: Abstractions & resource management 

  1 Abstraction: Process 
  1 type of resource management: CPU scheduling 

  Scheduling processes involves preempting and 
interleaving them. 

  This arbitrary interleaving requires special thought about 
critical sections and mutual exclusion 

  And that is how we got to the discussion of how to buy 
milk. 

  Today: How to implement Mutual Exclusion? 
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Mutual Exclusion and Critical Sections 

  A critical section is a piece of code in which a process or 
thread accesses a common (shared or global) resource. 

  Mutual Exclusion algorithms are used to avoid the 
simultaneous use of a common resource, such as a 
global variable. 

  In the buying milk example, what is the portion that 
requires mutual exclusion?   

4 



Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 

Pictorially… 



Conditions for a good Mutex solution: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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Mutex: Implementation Possibilities 

  Proposals for achieving mutual exclusion: 

  Lock variables 
  Disabling interrupts 
  Strict alternation 
  Peterson's solution 
  The TSL instruction 



Simple, user-level lock variables 

if (!lock) {!
!lock = 1;!
!{critical section}!
!lock = 0;!
}!
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Problem? 
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Use and Disable Interrupts 

 Use interrupts 
  Implement preemptive CPU scheduling 
  Internal events to relinquish the CPU 
  External events to reschedule the CPU 

 Disable interrupts 
  Introduce uninterruptible code regions 
  Think sequentially most of the time 
  Delay handling of external events 

CPU 

Memory Interrupt 

DisableInt() 
. 
. 
. 

EnableInt() 

Uninterruptible 
region 



A Simple Way to Use Disabling Interrupts 

  Issues with this approach? 

Acquire() { 
    disable interrupts; 
} 

Release() { 
    enable interrupts; 
} 

Acquire() 

  critical section? 

Release() 
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One More Try 

  Issues with this approach? 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != FREE) 

 ; 
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = FREE; 
  enable interrupts; 
} 



13 

Another Try 

  Does this fix the “wait forever” problem?  

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != FREE){ 
    enable interrupts; 
    disable interrupts; 
    } 
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = FREE; 
  enable interrupts; 
} 
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Yet Another Try 

  Any issues with this approach? 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value == BUSY) 
  { 
    enqueue me for lock; 
    Yield(); 
  }  
  lock.value = BUSY; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  if (anyone in queue) { 
    dequeue a thread; 
    make it ready; 
  }  
  lock.value = FREE; 
  enable interrupts; 
} 
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Strict Alternation 
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Which condition does Strict Alternation 
violate?: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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Peterson's Solution 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 

Tanenbaum calls this “simpler than Dekker’s”, but still… 
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Atomic Memory Load orStore 
  Assumed in in textbook (e.g. Peterson’s solution) 

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. on 
Computer Systems, Feb 1987. 
  5 writes and 2 reads 

int turn; 
int interested[N]; 

void enter_region(int process) 
{ 
    int other; 

    other = 1 – process; 
    interested[process] = TRUE; 
    turn = process; 
    while(turn == process && interested[other] == TRUE); 
} 

Current machines make promises 
regarding ordering and atomicity of 
individual reads or writes at the memory 
controller.  But ordering between unrelated 
reads and writes is more difficult 



Other Issues: Memory reference ordering 
between CPUs in a multiprocessor… 

  CPUs can make promises about memory ordering 
within one processor core.  But harder to make 
promises across the whole system. 
=> Create special instructions with stronger ordering promises. 
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One last tragic example…… 

  What is programmer trying to do here? 
  What could go wrong? 
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HARDWARE SUPPORT FOR 
MUTUAL EXCLUSION 
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Atomic Read-Modify-Write Instructions 

  Basic Abstraction: Test and Set (TAS) 
  Assembly instruction that operates on a memory address 
  TAS memaddress, status 
  Or “TAS Reg7 reg4” where Reg7 contains a memory address, 

and reg4 is the register where you want the result placed 

  Read memaddress.  If contents == 1, that’s it. 
  If contents == 0, atomically set to 1. 

  Read and write are performed together in a manner that 
looks atomic to all processes. 

  Return (ie place in a register) 
  If successfully set, return 1 (you just were able to obtain the 

lock) 
  If not successfully set, return 0 (you were unable to obtain the 

lock) 
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Other Atomic Read-Modify-Write 
Instructions 
  LOCK prefix in x86 

  Make a specific set instructions atomic 
  Together with BTS to implement Test&Set 

  Exchange (xchg, x86 architecture) 
  Swap register and memory 
  Atomic (even without LOCK) 

  Fetch&Add or Fetch&Op 
  Atomic instructions for large shared memory multiprocessor 

systems 
  Load link and conditional store  

  Read value in one instruction (load link) 
  Do some operations; 
  When store, check if value has been modified.  If not, ok; 

otherwise, jump back to start 
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A Simple Solution with Test&Set 

  Define TAS(lock) 
  If successfully set, return 1; 
  Otherwise, return 0; 

  Any issues with the following solution? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    ; 
} 

Release(lock) { 
  lock.value = 0; 
} 
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What About This Solution? 

 How long does the “busy wait” take? 

Acquire(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (lock.value) { 
    enqueue the thread; 
    block and lock.guard = 0; 
  } else { 
    lock.value = 1; 
    lock.guard = 0; 
  } 
} 

Release(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (anyone in queue) { 
    dequeue a thread; 
    make it ready; 
  } else 
    lock.value = 0; 
  lock.guard = 0; 
} 
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Example: Protect a Shared Variable 

  Acquire(mutex) system call 
  Pushing parameter, sys call # onto stack 
  Generating trap/interrupt to enter kernel 
  Jump to appropriate function in kernel 
  Verify process passed in valid pointer to mutex 
  Minimal spinning 
  Block and unblock process if needed 
  Get the lock 

  Executing “count++;” 
  Release(mutex) system call 

Acquire(lock) 
count++; 
Release(lock) 
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Available Primitives and Operations 

 Test-and-set 
  Works at either user or kernel 

 System calls for block/unblock 
  Block takes some token and goes to sleep 
  Unblock “wakes up” a waiter on token 



29 

Block and Unblock System Calls 

Block( lock ) 
  Spin on lock.guard 
  Save the context to TCB 
  Enqueue TCB to lock.q 
  Clear lock.guard 
  Call scheduler 

  Questions 
  Do they work? 
  Can we get rid of the spin lock? 

Unblock( lock ) 
  Spin on lock.guard 
  Dequeue a TCB from lock.q 
  Put TCB in ready queue 
  Clear lock.guard 



Always Block 

  What are the issues with this approach? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    Block( lock ); 
} 

Release(lock) { 
  lock.value = 0; 
  Unblock( lock ); 
} 
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Always Spin 

  Two spinning loops in Acquire()? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    while (lock.value) 
    ; 
} 

Release(lock) { 
  lock.value = 0; 
} 

CPU CPU 

L1 $ L1 $ 

L2 $ 

Multicore 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

… … 

Memory 

SMP 

TAS 
TAS 



COMPETITIVE SPINNING 
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Optimal Algorithms 

  What is the optimal solution to spin vs. block? 
  Know the future 
  Exactly when to spin and when to block 

  But, we don’t know the future 
  There is no online optimal algorithm 

  Offline optimal algorithm 
  Afterwards, derive exactly when to block or spin (“what if”) 
  Useful to compare against online algorithms 



Classic Competitive Algorithms Example 

  When to rent skis and when to buy? 
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Competitive Algorithms 

  An algorithm is c-competitive if  
for every input sequence σ 

                           CA(σ) ≤ c × Copt(σ) + k 

  c is a constant 
  CA(σ) is the cost incurred by algorithm A in processing σ 
  Copt(σ) is the cost incurred by the optimal algorithm in 

processing σ 

  What we want is to have c as small as possible 
  Deterministic 
  Randomized 



Constant Competitive Algorithms 

  Spin up to N times if the lock is held by another thread 
  If the lock is still held after spinning N times, block 

  If spinning N times is equal to the context-switch time, what is the 
competitive factor of the algorithm? 

Acquire(lock, N) { 
  int i; 

  while (!TAS(lock.value)) { 
    i = N; 
    while (!lock.value && i) 
      i--; 

    if (!i)  
      Block(lock); 
  } 
} 
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Approximate Optimal Online Algorithms 

  Main idea 
  Use past to predict future 

  Approach 
  Random walk 

•  Decrement N by a unit if the last Acquire() blocked 
•  Increment N by a unit if the last Acquire() didn’t block 

  Recompute N each time for each Acquire() based on some 
lock-waiting distribution for each lock 

  Theoretical results 
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))  

The competitive factor is about 1.58. 
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Empirical Results 

A. Karlin, K. Li, M. Manasse, and S. Owicki, 
“Empirical Studies of Competitive Spinning 
for a Shared-Memory Multiprocessor,” 
Proceedings of the 13th ACM Symposium 
on Operating Systems Principle, 1991. 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 
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Summary 

  Disabling interrupts for mutex 
  There are many issues 
  When making it work, it works for only uniprocessors 

  Atomic instruction support for mutex 
  Atomic load and stores are not good enough 
  Test&set and other instructions are the way to go 

  Competitive spinning 
  Spin at the user level most of the time 
  Make no system calls in the absence of contention 
  Have more threads than processors 


