COS 318: Operating Systems

Mutex Implementation

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

B

X

il 5

Announcements

Project 1 due tomorrow.
e Tonight’s precept is open questioning.

A few words about Independent Work: Why you should
strongly consider starting it during your junior year:

1) Helps you get internships between jr and sr year.

2) Improves the detail of the reference letter a prof can
write for you during fall of your senior year.

3) Let’'s us nominate you for awards with fall deadlines
like this one:

http://cra.org/awards/undergrad/

s

PR

Roadmap: Where are we & how did we
get here?

OS: Abstractions & resource management
e 1 Abstraction: Process
e 1 type of resource management: CPU scheduling

Scheduling processes involves preempting and
interleaving them.

This arbitrary interleaving requires special thought about
critical sections and mutual exclusion

And that is how we got to the discussion of how to buy
milk.

B

X

.;2 %
NN

Mutual Exclusion and Critical Sections

®
A critical section is a piece of code in which a process or

thread accesses a common (shared or global) resource.

Mutual Exclusion algorithms are used to avoid the

simultaneous use of a common resource, such as a
global variable.

In the buying milk example, what is the portion that
requires mutual exclusion?

(IGET)

Pictorially...

A enters critical region

/ A leaves critical region

Process A I I
| | | |
| | | |
| | Battemptsto B enters : B leaves
| | enter critical | critical region : critical region

region

| | 9 | I/
| |

Process B oooooooooooooooooooooooooooooooooooo
| I Y,
| | s | |
I I B blocked I I
T1 T2 T3 T4

Time ———>»
%3, mg Tanenbaum, Modern Operating Systems 3 e, (c¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Conditions for a good Mutex solution:

No two processes may be simultaneously inside their
critical regions.

No assumptions may be made about speeds or the
number of CPUs.

No process running outside its critical region may block
other processes.

No process should have to wait forever to enter its
critical region.

Mutex: Implementation Possibilities

Proposals for achieving mutual exclusion:

e Lock variables

e Disabling interrupts
e Strict alternation

e Peterson's solution
e The TSL instruction

Simple, user-level lock variables

if (!lock) {

lock = 1;
{critical section}
lock = 0;

Problem?

Mutex: Implementation Possibilities

¢ Proposals for achieving mutual exclusion:

Lock variables
Disabling interrupts
Strict alternation
Peterson's solution
The TSL instruction

;wgpsnbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Use and Disable Interrupts

Use interrupts

e Implement preemptive CPU scheduling
e Internal events to relinquish the CPU
e External events to reschedule the CPU

Disable interrupts

e Introduce uninterruptible code regions

e Think sequentially most of the time
e Delay handling of external events

Uninterruptible
region

CPU

Disablelnt()

Enableint()

\/

10

A Simple Way to Use Disabling Interrupts

®
_ Acquire () {
Acquire() disable interrupts;
critical section? }
Release() Release() {
enable interrupts;

}

Issues with this approach?

One More Try

Acquire (lock) {
disable interrupts;
while (lock.value !'= FREE)
lock.value = BUSY;
enable interrupts;

}

Issues with this approach?

Release (lock) {
disable interrupts;
lock.value = FREE;
enable interrupts;

}

12

Another Try

Acquire (lock) {

disable interrupts;

while (lock.value !'= FREE) {
enable interrupts;
disable interrupts;
}

lock.value = BUSY;

enable interrupts;

}

Release (lock) {
disable interrupts;
lock.value = FREE;
enable interrupts;

}

Does this fix the “wait forever” problem?

13

Yet Another Try

Acquire (lock) { Release (lock) {

disable interrupts; disable interrupts;

while (lock.value == BUSY) if (anyone in queue) {

{ dequeue a thread;
enqueue me for lock; make it ready;
Yield() ; }

} lock.value = FREE;

lock.value = BUSY; enable interrupts;

enable interrupts; }

}
Any issues with this approach?

14

Mutex: Implementation Possibilities

Proposals for achieving mutual exclusion:

e Lock variables

e Disabling interrupts
e Strict alternation

e Peterson's solution
e The TSL instruction

e,

Strict Alternation

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn !=1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(@) (b)

,Sg %

(IGET)

Which condition does Strict Alternation
violate?:

No two processes may be simultaneously inside their
critical regions.

No assumptions may be made about speeds or the
number of CPUs.

No process running outside its critical region may block
other processes.

No process should have to wait forever to enter its
critical region.

17

Peterson's Solution

#define FALSE 0
#define TRUE 1
#define N 2

int turn;
int interested[N];

void enter_region(int process);

/* number of processes */

/* whose turn is it? */
/* all values initially O (FALSE) */

/* process is 0 or 1 */
/* number of the other process */
/* the opposite of process */

/* show that you are interested */
/* set flag */

while (turn == process && interested[other] == TRUE) /* null statement */ ;

{
int other;
other = 1 — process;
interested[process] = TRUE;
turn = process;
}
void leave_region(int process)
{
interested[process] = FALSE;
}

/* process: who is leaving */

/* indicate departure from critical region */

Tanenbaum calls this “simpler than Dekker’s”, but still...

nbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Atomic Memory Load orStore

Assumed in in textbook (e.g. Peterson’s solution)

int turn;
int interested[N];

Current machines make promises

regarding ordering and atomicity of

{ individual reads or writes at the memory
int other; controller. But ordering between unrelated

reads and writes is more difficult

void enter region(int process)

other = 1 - process;

interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) ;

L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. on
Computer Systems, Feb 1987.

e 5 writes and 2 reads

19

Other Issues: Memory reference ordering
between CPUs in a multiprocessor...

13} 2]
Flagl =1 Flag2 =1
if (Flag2 == 0) if (Flagl ==0)

critical section critical section

CPUs can make promises about memory ordering
within one processor core. But harder to make
promises across the whole system.

@ => Create special instructions with stronger ordering promises.
® 20

One last tragic example......

P 2]
Data = 2000 while (Head == 0) {:}
Head =1 ...=Data

What is programmer trying to do here?
What could go wrong?

HARDWARE SUPPORT FOR
MUTUAL EXCLUSION

22

Atomic Read-Modify-Write Instructions

Basic Abstraction: Test and Set (TAS)

e Assembly instruction that operates on a memory address
e TAS memaddress, status

e Or “TAS Reg7 reg4” where Reg7 contains a memory address,
and reg4 is the register where you want the result placed

e Read memaddress. If contents == 1, that’s it.
e |f contents == 0, atomically set to 1.

Read and write are performed together in a manner that
ooks atomic to all processes.

Return (ie place in a register)

e If successfully set, return 1 (you just were able to obtain the
lock)

e If not successfully set, return 0 (you were unable to obtain the
,? lock) 23

Other Atomic Read-Modify-Write

Instructions
LOCK prefix in x86

e Make a specific set instructions atomic
e Together with BTS to implement Test&Set

Exchange (xchg, x86 architecture)

e Swap register and memory
e Atomic (even without LOCK)

Fetch&Add or Fetch&Op

e Atomic instructions for large shared memory multiprocessor
systems

Load link and conditional store
e Read value in one instruction (load link)

e Do some operations;

e \When store, check if value has been modified. If not, ok;
otherwise, jump back to start

24

A Simple Solution with Test&Set

Define TAS(lock)
e If successfully set, return 1;
e Otherwise, return O;

Any issues with the following solution?

Acquire (lock) {
while (!'TAS(lock.wvalue))

}

Release (lock) {
lock.value = 0;

25

What About This Solution?

Acquire (lock) { Releése (lock) {

while (!TAS (lock.guard)) while (!TAS(lock.guard))

if (lock.value) { if (anyone in queue) {
enqueue the thread; deque?e a thread;
block and lock.guard = O; make it ready;

} else { } else
lock.value = 1; lock.value = 0;
lock.guard = 0; lock.guard = 0;

} }
}

How long does the “busy wait” take?

26

Example: Protect a Shared Variable

Acquire (lock)
count++;
Release (lock)

Acquire(mutex) system call

Pushing parameter, sys call # onto stack
Generating trap/interrupt to enter kernel

Jump to appropriate function in kernel

Verify process passed in valid pointer to mutex
Minimal spinning

Block and unblock process if needed

Get the lock

Executing “count++;"
Release(mutex) system call

27

Available Primitives and Operations

Test-and-set
e \Works at either user or kernel

System calls for block/unblock

e Block takes some token and goes to sleep
e Unblock “wakes up” a waiter on token

28

Block and Unblock System Calls

Block(lock)

Spin on lock.guard
Save the context to TCB
Enqueue TCB to lock.q
Clear lock.guard

Call scheduler

Questions
e Do they work?
e Can we get rid of the spin lock?

Unblock(lock)

Spin on lock.guard
Dequeue a TCB from lock.q
Put TCB in ready queue
Clear lock.guard

29

Always Block

Acquire (lock) { Release (lock) {
while (!'TAS(lock.wvalue)) lock.value = 0;
Block(lock) ; Unblock(lock) ;

} }

What are the issues with this approach?

Always Spin

Acquire (lock) { Release (lock) {
while (!'TAS(lock.wvalue)) lock.value = 0;
while (lock.wvalue) }

}
Two spinning loops in Acquire () ?

CPU CPU CPU CPU
L1$ L1$ L1$ | L1$

E L2 $ L2 $
125 ~FAS—

Memory

Multicore SMP

COMPETITIVE SPINNING

32

Optimal Algorithms

What is the optimal solution to spin vs. block?
e Know the future
e Exactly when to spin and when to block

But, we don’t know the future
e There is no online optimal algorithm \

)
/

NN\

Offline optimal algorithm
e Afterwards, derive exactly when to block or spin (“
e Useful to compare against online algorithms

=

hat if)

33

Classic Competitive Algorithms Example

®
When to rent skis and when to buy?

34

Competitive Algorithms

An algorithm is c-competitive if
for every input sequence o

CA(O) SCX Copt(O) + K

® Cis a constant

e C,(0) is the cost incurred by algorithm A in processing o

o C,(0)is the cost incurred by the optimal algorithm in
processing o

What we want is to have c as small as possible
e Deterministic
e Randomized

35

Constant Competitive Algorithms

Acquire(lock, N) {
int 1i;

while (!'TAS(lock.value)) {
i = N;

while ('lock.value && i)
i--;

if ('1i)
Block (lock) ;

}
}

Spin up to N times if the lock is held by another thread
If the lock is still held after spinning N times, block

If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Approximate Optimal Online Algorithms

Main idea
e Use past to predict future

Approach

e Random walk
« Decrement N by a unit if the last Acquire() blocked
* Increment N by a unit if the last Acquire() didn’t block

e Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

Theoretical results
E Cp(o (P)) = (el(e-1)) x E C,,(c(P))

The competitive factor is about 1.58.

37

Empirical Results

/\ /\OCC

Block
Nub (2h) 1.943
Taos (24h) 1.715

Taos (M24) 1.776
Taos (Regsim) 1.578
Ivy (100m) 5.171

Ivy (18h) 7.243
Galaxy 2.897
Hanoi 2.997
Regsim 4.675

Spin
2.962
3.366
3.535
3.293
2.298
1.562
2.667
2.976
1.302

Fixed C/2\ Fixed C Opt Online 3-samples /R-walk

1.503
1.492
1.483
1.499
1.341
1.274
1.419
1.418
1.423

1.559 1.078 1.225 1.093
1.7567 1.141 1.212 1.213
1.750 1.106 1.177 1.160
1.748 1.161 1.260 1.268
1.438 1.133 1.212 1.167
1.233 1.109 1.233 1.141
1.740 1.237 1.390 1.693
1.726 1.200 1.366 1.642
1.374 1.183 1.393 1.366

Table 1: Synchronization costs for eMogram relative to the optimal off-line a]gcbﬂ»tm/

Max Elapsed time Improvement

spins (seconds)
Always-block N/A 10529.5 0.0%
Always-spin N/A 8256.3 21.5%
Fixed-spin 100 9108.0 13.5%) . L

200 8000.0 A. Karlin, K. Li, M. Manasse, and S. Owicki,

Opt-known 1008 7881.4 25.1% “Empirical Studies of Competitive Spinning
Opt-approx 1008 8171.2 22.3% for a Shared-Memory Multiprocessor,”
3-samples 1008 8011.6 23.9% Proceedings of the 13" ACM Symposium
Random-walk 1008 7929.7 [24.7% | on Operating Systems Principle, 1991.

ning strategies.

Table 3: Elapsed times of Regsim using different spin-

38

The Big Picture

OS codes and concurrent applications

High-Level
Atlgmic A\\/PI Mutex Semaphores Monitors Send/Recv
Low-Level I i
OW_ eve Load/store , nterrupt Test&Set cher atp mic
Atomic Ops disable/enable instructions
Interrupts CPU

Multiprocessors

(I/O, timer) scheduling

39

Summary

Disabling interrupts for mutex

e There are many issues

e \When making it work, it works for only uniprocessors
Atomic instruction support for mutex

e Atomic load and stores are not good enough

e Test&set and other instructions are the way to go
Competitive spinning

e Spin at the user level most of the time

e Make no system calls in the absence of contention

e Have more threads than processors

40

