
COS 318: Operating Systems

Mutex Implementation

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Announcements

  Project 1 due tomorrow.
  Tonight’s precept is open questioning.

  A few words about Independent Work: Why you should
strongly consider starting it during your junior year:
 1) Helps you get internships between jr and sr year.
 2) Improves the detail of the reference letter a prof can
write for you during fall of your senior year.
 3) Let’s us nominate you for awards with fall deadlines
like this one:
 http://cra.org/awards/undergrad/

2

Roadmap: Where are we & how did we
get here?
  OS: Abstractions & resource management

  1 Abstraction: Process
  1 type of resource management: CPU scheduling

  Scheduling processes involves preempting and
interleaving them.

  This arbitrary interleaving requires special thought about
critical sections and mutual exclusion

  And that is how we got to the discussion of how to buy
milk.

  Today: How to implement Mutual Exclusion?

3

Mutual Exclusion and Critical Sections

  A critical section is a piece of code in which a process or
thread accesses a common (shared or global) resource.

  Mutual Exclusion algorithms are used to avoid the
simultaneous use of a common resource, such as a
global variable.

  In the buying milk example, what is the portion that
requires mutual exclusion?

4

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Pictorially…

Conditions for a good Mutex solution:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

6

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

Simple, user-level lock variables

if (!lock) {!
!lock = 1;!
!{critical section}!
!lock = 0;!
}!

8

Problem?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

10

Use and Disable Interrupts

 Use interrupts
  Implement preemptive CPU scheduling
  Internal events to relinquish the CPU
  External events to reschedule the CPU

 Disable interrupts
  Introduce uninterruptible code regions
  Think sequentially most of the time
  Delay handling of external events

CPU

Memory Interrupt

DisableInt()
.
.
.

EnableInt()

Uninterruptible
region

A Simple Way to Use Disabling Interrupts

  Issues with this approach?

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

Acquire()

 critical section?

Release()

12

One More Try

  Issues with this approach?

Acquire(lock) {
 disable interrupts;
 while (lock.value != FREE)

 ;
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = FREE;
 enable interrupts;
}

13

Another Try

  Does this fix the “wait forever” problem?

Acquire(lock) {
 disable interrupts;
 while (lock.value != FREE){
 enable interrupts;
 disable interrupts;
 }
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = FREE;
 enable interrupts;
}

14

Yet Another Try

  Any issues with this approach?

Acquire(lock) {
 disable interrupts;
 while (lock.value == BUSY)
 {
 enqueue me for lock;
 Yield();
 }
 lock.value = BUSY;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 }
 lock.value = FREE;
 enable interrupts;
}

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mutex: Implementation Possibilities

  Proposals for achieving mutual exclusion:

  Lock variables
  Disabling interrupts
  Strict alternation
  Peterson's solution
  The TSL instruction

Strict Alternation

16

Which condition does Strict Alternation
violate?:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

17

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum calls this “simpler than Dekker’s”, but still…

19

Atomic Memory Load orStore
  Assumed in in textbook (e.g. Peterson’s solution)

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM Trans. on
Computer Systems, Feb 1987.
  5 writes and 2 reads

int turn;
int interested[N];

void enter_region(int process)
{
 int other;

 other = 1 – process;
 interested[process] = TRUE;
 turn = process;
 while(turn == process && interested[other] == TRUE);
}

Current machines make promises
regarding ordering and atomicity of
individual reads or writes at the memory
controller. But ordering between unrelated
reads and writes is more difficult

Other Issues: Memory reference ordering
between CPUs in a multiprocessor…

  CPUs can make promises about memory ordering
within one processor core. But harder to make
promises across the whole system.
=> Create special instructions with stronger ordering promises.

20

One last tragic example……

  What is programmer trying to do here?
  What could go wrong?

21

HARDWARE SUPPORT FOR
MUTUAL EXCLUSION

22

23

Atomic Read-Modify-Write Instructions

  Basic Abstraction: Test and Set (TAS)
  Assembly instruction that operates on a memory address
  TAS memaddress, status
  Or “TAS Reg7 reg4” where Reg7 contains a memory address,

and reg4 is the register where you want the result placed

  Read memaddress. If contents == 1, that’s it.
  If contents == 0, atomically set to 1.

  Read and write are performed together in a manner that
looks atomic to all processes.

  Return (ie place in a register)
  If successfully set, return 1 (you just were able to obtain the

lock)
  If not successfully set, return 0 (you were unable to obtain the

lock)

24

Other Atomic Read-Modify-Write
Instructions
  LOCK prefix in x86

  Make a specific set instructions atomic
  Together with BTS to implement Test&Set

  Exchange (xchg, x86 architecture)
  Swap register and memory
  Atomic (even without LOCK)

  Fetch&Add or Fetch&Op
  Atomic instructions for large shared memory multiprocessor

systems
  Load link and conditional store

  Read value in one instruction (load link)
  Do some operations;
  When store, check if value has been modified. If not, ok;

otherwise, jump back to start

25

A Simple Solution with Test&Set

  Define TAS(lock)
  If successfully set, return 1;
  Otherwise, return 0;

  Any issues with the following solution?

Acquire(lock) {
 while (!TAS(lock.value))
 ;
}

Release(lock) {
 lock.value = 0;
}

26

What About This Solution?

 How long does the “busy wait” take?

Acquire(lock) {
 while (!TAS(lock.guard))
 ;
 if (lock.value) {
 enqueue the thread;
 block and lock.guard = 0;
 } else {
 lock.value = 1;
 lock.guard = 0;
 }
}

Release(lock) {
 while (!TAS(lock.guard))
 ;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 } else
 lock.value = 0;
 lock.guard = 0;
}

27

Example: Protect a Shared Variable

  Acquire(mutex) system call
  Pushing parameter, sys call # onto stack
  Generating trap/interrupt to enter kernel
  Jump to appropriate function in kernel
  Verify process passed in valid pointer to mutex
  Minimal spinning
  Block and unblock process if needed
  Get the lock

  Executing “count++;”
  Release(mutex) system call

Acquire(lock)
count++;
Release(lock)

28

Available Primitives and Operations

 Test-and-set
  Works at either user or kernel

 System calls for block/unblock
  Block takes some token and goes to sleep
  Unblock “wakes up” a waiter on token

29

Block and Unblock System Calls

Block(lock)
  Spin on lock.guard
  Save the context to TCB
  Enqueue TCB to lock.q
  Clear lock.guard
  Call scheduler

  Questions
  Do they work?
  Can we get rid of the spin lock?

Unblock(lock)
  Spin on lock.guard
  Dequeue a TCB from lock.q
  Put TCB in ready queue
  Clear lock.guard

Always Block

  What are the issues with this approach?

Acquire(lock) {
 while (!TAS(lock.value))
 Block(lock);
}

Release(lock) {
 lock.value = 0;
 Unblock(lock);
}

31

Always Spin

  Two spinning loops in Acquire()?

Acquire(lock) {
 while (!TAS(lock.value))
 while (lock.value)
 ;
}

Release(lock) {
 lock.value = 0;
}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

COMPETITIVE SPINNING

32

33

Optimal Algorithms

  What is the optimal solution to spin vs. block?
  Know the future
  Exactly when to spin and when to block

  But, we don’t know the future
  There is no online optimal algorithm

  Offline optimal algorithm
  Afterwards, derive exactly when to block or spin (“what if”)
  Useful to compare against online algorithms

Classic Competitive Algorithms Example

  When to rent skis and when to buy?

34

35

Competitive Algorithms

  An algorithm is c-competitive if
for every input sequence σ

 CA(σ) ≤ c × Copt(σ) + k

  c is a constant
  CA(σ) is the cost incurred by algorithm A in processing σ
  Copt(σ) is the cost incurred by the optimal algorithm in

processing σ

  What we want is to have c as small as possible
  Deterministic
  Randomized

Constant Competitive Algorithms

  Spin up to N times if the lock is held by another thread
  If the lock is still held after spinning N times, block

  If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Acquire(lock, N) {
 int i;

 while (!TAS(lock.value)) {
 i = N;
 while (!lock.value && i)
 i--;

 if (!i)
 Block(lock);
 }
}

37

Approximate Optimal Online Algorithms

  Main idea
  Use past to predict future

  Approach
  Random walk

•  Decrement N by a unit if the last Acquire() blocked
•  Increment N by a unit if the last Acquire() didn’t block

  Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

  Theoretical results
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))

The competitive factor is about 1.58.

38

Empirical Results

A. Karlin, K. Li, M. Manasse, and S. Owicki,
“Empirical Studies of Competitive Spinning
for a Shared-Memory Multiprocessor,”
Proceedings of the 13th ACM Symposium
on Operating Systems Principle, 1991.

39

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

40

Summary

  Disabling interrupts for mutex
  There are many issues
  When making it work, it works for only uniprocessors

  Atomic instruction support for mutex
  Atomic load and stores are not good enough
  Test&set and other instructions are the way to go

  Competitive spinning
  Spin at the user level most of the time
  Make no system calls in the absence of contention
  Have more threads than processors

