
COS 318: Operating Systems

Virtual Machine Monitors

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Announcements

  Project 6 due Tuesday Jan 17
  Final Exam: Sunday Jan 22 at 1pm

  in CS104 (LARGE AUDITORIUM! NOT THIS ROOM!)

  90 minutes long.
  Cumulative, but biased toward material after the midterm.
  1-page (front and back) cheat sheet if you desire.
  Otherwise, the exam is closed-book, closed-notes.

2

Introduction

 Have been around since 1960’s on mainframes
  used for multitasking
  Good example – VM/370

 Have resurfaced on commodity platforms
  Server Consolidation
  Web Hosting centers
  High-Performance Compute Clusters
  Managed desktop / thin-client
  Software development / kernel hacking

3

Why do we care?
 Manageability

  Ease maintenance, administration, provisioning, etc.
 Performance

  Overhead of virtualization should be small

  Isolation
  Activity of one VM should not impact other active VMs
  Data of one VM is inaccessible by another

 Scalability
  Minimize cost per VM

4

Virtual Machine Monitor (VMM)

  Resides as a layer below the operating system

  Presents a hardware interface to an OS

  Multiplexes resources between several virtual machines
(VMs)

  Performance Isolates VMs from each other

5

Virtualization Styles

  Fully virtualizing VMM
  Virtual machine looks exactly like some physical machine.
  (But maybe not the one you’re running on right now.)
  Run OS or other software unchanged (from the machine the

VM mimics)
  Para- virtualizing VMM

  Some architecture features are hard to virtualize, so exact
copy is too difficult (or slow).

  Instead, punt on a few features.
  VMM provides idealized view of hardware and then fixes

under the covers.
  Since the VMM doesn’t match any real hardware, an OS

running on it MUST be changed, not legacy.

6

VMM Types

7

For VM approaches you have used, which type are they?

VMM Classification

8

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
  Provide illusion of multiple machines
  Retain control of the physical machine

Subsystems
  Processor Virtualization
  I/O virtualization
  Memory Virtualization

9

Processor Virtualization

Popek and Goldberg (1974)
  Sensitive instructions: only executed in kernel mode
  Privileged instructions: trap when run in user mode
  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

  When guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

10

x86 Processor Virtualization

  x86 architecture is not fully virtualizable
  Certain privileged instructions behave differently when

run in unprivileged mode
•  POPF instruction that is used to set and clear the

interrupt-disable flag. If run in user mode, it has no
effect: it’s a NO-OP.

  Certain unprivileged instructions can access privileged
state

 Techniques to address inability to virtualize x86
  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
  Perform Binary Translation (Full Virtualization)

11

I/O Virtualization

  Issue: lots of I/O devices
 Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
  Insight: Device driver already written for popular

Operating Systems
 Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

12

I/O Virtualization

13

VMM + Device Drivers VMM

Higher performance, but PITA
to write all the drivers

Lower performance, but reuses
drivers guest OS already has.

Memory Virtualization

  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

  The shadow page table controls which pages of machine
memory are assigned to a given VM

  When guest OS updates its page table, VMM updates
the shadow

14

Case Study: VMware ESX Server

  Type I VMM - Runs on bare hardware

  Full-virtualized – Legacy OS can run unmodified on top of
ESX server

  Fully controls hardware resources and provides good
performance

15

ESX Server – CPU Virtualization

 Most user code executes in Direct Execution
mode; near native performance

 Uses runtime Binary Translation for x86
virtualization
  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

16

ESX Server – Memory Virtualization
  Maintains shadow page tables with virtual to machine

address mappings.
  Shadow page tables are used by the physical processor
  Guest OS page table: maps virtual addresses to

“physical” addresses (note quotes)
  ESX maintains the pmap data structure per VM: maps

“physical” to machine address mappings
  Shadow page table holds the combined effects of these

two map steps
  ESX can easily remap a machine page when needed

17

ESX Server – Memory Mgmt
  Page reclamation – Ballooning technique

  VMM reclaims memory when it detects thrashing/
overcommitment

  VMM controls shadow page table, so it could just arbitrarily
take a few pages away.

  But the guest OS has better info on which pages are used or
not- want *it* to make the decision.

  Page sharing – Content based sharing
  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

18

ESX Server- Ballooning

19

ESX Server – Page Sharing

20

Real World Page Sharing

21

ESX Server – I/O Virtualization

  Has highly optimized storage subsystem for networking
and storage devices
  Directly integrated into the VMM
  Uses device drivers from the Linux kernel to talk directly to the

device
  Low performance devices are channeled to special “host”

VM, which runs a full Linux OS

22

I/O Virtualization

23

VMM + Device Drivers VMM

ESX uses both models: LHS for high-perf devices, RHS for rest.

Xen

  Type I VMM
  Para-virtualized

  Linux->Xen: alters 3000 lines or about 1% of code
  Open-source
  Designed to be efficient & scalable:

  run about 100 virtual machines on a single machine

  Used in Amazon Web Services EC2

24

Xen – CPU Virtualization

  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

  Processor Rings
  Guest applications run in Ring 3
  Guest OS runs in Ring 1
  Xen runs in Ring 0

25

Xen – Memory Virtualization(1)

  Initial memory allocation is specified and memory is
statically partitioned

  A maximum allowable reservation is also specified.
  Balloon driver technique similar to ESX server used to

reclaim pages

26

Xen – Memory Virtualization(2)

  Guest OS is responsible for allocating and managing
hardware page table

  Xen involvement is limited to ensure safety and isolation
  Xen exists in the top 64 MB section at the top of every

address space
  Because if there were process switches, when entering and

leaving the VMM, some (not all) CPUs would need TLB
flushes at those points

27

Xen – I/O Virtualization

  Xen exposes a set of clean and simple device
abstractions

  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

28

VMMs the only way to Virtualize?

  Alternative: Container-based OS (COS)
  Eg., Solaris 10, Linux-Vserver, OpenVZ

29

Features VMM COS
Multiple kernels ✔
Administrative power (root) ✔ ✔
Manageability ✔ ✔
Scalability ✔ ✔✔
Isolation ✔✔ ✔
Efficiency ✔ ✔✔

The Big Finish

30

Key OS Topics

  Abstraction
  Resource Management
  Protection

  The first topic, abstraction, is a key enabler for the other
two.
  Think about Virtual memory…

31

32

Operating Systems are Illusionists

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw hard drive storage

Abstraction (“Looks like”)
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Operating Systems are Timeless!

  Example: VMs first used by IBM in early 1970s!
  Tradeoffs changed, hardware got cheap, and they went

into dormancy
  Now back again: Why?

⇒  Moral of the story: Know the basics and be creative about
how, where, when to apply them or variations!

33

Other Cool OS-related classes to take

 Spring
  COS 461: Computer Networks
  COS 598b: Mobile Computing

 Fall
  COS518: Advanced Computer Systems
  COS429: Security
  Sometimes offered: COS 598A: Parallel Arch & Prog.

34

