
COS 318: Operating Systems

Virtual Machine Monitors

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Announcements

  Project 6 due Tuesday Jan 17
  Final Exam: Sunday Jan 22 at 1pm

  in CS104 (LARGE AUDITORIUM! NOT THIS ROOM!)

  90 minutes long.
  Cumulative, but biased toward material after the midterm.
  1-page (front and back) cheat sheet if you desire.
  Otherwise, the exam is closed-book, closed-notes.

2

Introduction

 Have been around since 1960’s on mainframes
  used for multitasking
  Good example – VM/370

 Have resurfaced on commodity platforms
  Server Consolidation
  Web Hosting centers
  High-Performance Compute Clusters
  Managed desktop / thin-client
  Software development / kernel hacking

3

Why do we care?
 Manageability

  Ease maintenance, administration, provisioning, etc.
 Performance

  Overhead of virtualization should be small

  Isolation
  Activity of one VM should not impact other active VMs
  Data of one VM is inaccessible by another

 Scalability
  Minimize cost per VM

4

Virtual Machine Monitor (VMM)

  Resides as a layer below the operating system

  Presents a hardware interface to an OS

  Multiplexes resources between several virtual machines
(VMs)

  Performance Isolates VMs from each other

5

Virtualization Styles

  Fully virtualizing VMM
  Virtual machine looks exactly like some physical machine.
  (But maybe not the one you’re running on right now.)
  Run OS or other software unchanged (from the machine the

VM mimics)
  Para- virtualizing VMM

  Some architecture features are hard to virtualize, so exact
copy is too difficult (or slow).

  Instead, punt on a few features.
  VMM provides idealized view of hardware and then fixes

under the covers.
  Since the VMM doesn’t match any real hardware, an OS

running on it MUST be changed, not legacy.

6

VMM Types

7

For VM approaches you have used, which type are they?

VMM Classification

8

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
  Provide illusion of multiple machines
  Retain control of the physical machine

Subsystems
  Processor Virtualization
  I/O virtualization
  Memory Virtualization

9

Processor Virtualization

Popek and Goldberg (1974)
  Sensitive instructions: only executed in kernel mode
  Privileged instructions: trap when run in user mode
  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

  When guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

10

x86 Processor Virtualization

  x86 architecture is not fully virtualizable
  Certain privileged instructions behave differently when

run in unprivileged mode
•  POPF instruction that is used to set and clear the

interrupt-disable flag. If run in user mode, it has no
effect: it’s a NO-OP.

  Certain unprivileged instructions can access privileged
state

 Techniques to address inability to virtualize x86
  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
  Perform Binary Translation (Full Virtualization)

11

I/O Virtualization

  Issue: lots of I/O devices
 Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
  Insight: Device driver already written for popular

Operating Systems
 Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

12

I/O Virtualization

13

VMM + Device Drivers VMM

Higher performance, but PITA
to write all the drivers

Lower performance, but reuses
drivers guest OS already has.

Memory Virtualization

  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

  The shadow page table controls which pages of machine
memory are assigned to a given VM

  When guest OS updates its page table, VMM updates
the shadow

14

Case Study: VMware ESX Server

  Type I VMM - Runs on bare hardware

  Full-virtualized – Legacy OS can run unmodified on top of
ESX server

  Fully controls hardware resources and provides good
performance

15

ESX Server – CPU Virtualization

 Most user code executes in Direct Execution
mode; near native performance

 Uses runtime Binary Translation for x86
virtualization
  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

16

ESX Server – Memory Virtualization
  Maintains shadow page tables with virtual to machine

address mappings.
  Shadow page tables are used by the physical processor
  Guest OS page table: maps virtual addresses to

“physical” addresses (note quotes)
  ESX maintains the pmap data structure per VM: maps

“physical” to machine address mappings
  Shadow page table holds the combined effects of these

two map steps
  ESX can easily remap a machine page when needed

17

ESX Server – Memory Mgmt
  Page reclamation – Ballooning technique

  VMM reclaims memory when it detects thrashing/
overcommitment

  VMM controls shadow page table, so it could just arbitrarily
take a few pages away.

  But the guest OS has better info on which pages are used or
not- want *it* to make the decision.

  Page sharing – Content based sharing
  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

18

ESX Server- Ballooning

19

ESX Server – Page Sharing

20

Real World Page Sharing

21

ESX Server – I/O Virtualization

  Has highly optimized storage subsystem for networking
and storage devices
  Directly integrated into the VMM
  Uses device drivers from the Linux kernel to talk directly to the

device
  Low performance devices are channeled to special “host”

VM, which runs a full Linux OS

22

I/O Virtualization

23

VMM + Device Drivers VMM

ESX uses both models: LHS for high-perf devices, RHS for rest.

Xen

  Type I VMM
  Para-virtualized

  Linux->Xen: alters 3000 lines or about 1% of code
  Open-source
  Designed to be efficient & scalable:

  run about 100 virtual machines on a single machine

  Used in Amazon Web Services EC2

24

Xen – CPU Virtualization

  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

  Processor Rings
  Guest applications run in Ring 3
  Guest OS runs in Ring 1
  Xen runs in Ring 0

25

Xen – Memory Virtualization(1)

  Initial memory allocation is specified and memory is
statically partitioned

  A maximum allowable reservation is also specified.
  Balloon driver technique similar to ESX server used to

reclaim pages

26

Xen – Memory Virtualization(2)

  Guest OS is responsible for allocating and managing
hardware page table

  Xen involvement is limited to ensure safety and isolation
  Xen exists in the top 64 MB section at the top of every

address space
  Because if there were process switches, when entering and

leaving the VMM, some (not all) CPUs would need TLB
flushes at those points

27

Xen – I/O Virtualization

  Xen exposes a set of clean and simple device
abstractions

  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

28

VMMs the only way to Virtualize?

  Alternative: Container-based OS (COS)
  Eg., Solaris 10, Linux-Vserver, OpenVZ

29

Features VMM COS
Multiple kernels ✔ 
Administrative power (root) ✔ ✔
Manageability ✔ ✔
Scalability ✔ ✔✔
Isolation ✔✔ ✔
Efficiency ✔ ✔✔

The Big Finish

30

Key OS Topics

  Abstraction
  Resource Management
  Protection

  The first topic, abstraction, is a key enabler for the other
two.
  Think about Virtual memory…

31

32

Operating Systems are Illusionists

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw hard drive storage

Abstraction (“Looks like”)
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Operating Systems are Timeless!

  Example: VMs first used by IBM in early 1970s!
  Tradeoffs changed, hardware got cheap, and they went

into dormancy
  Now back again: Why?

⇒  Moral of the story: Know the basics and be creative about
how, where, when to apply them or variations!

33

Other Cool OS-related classes to take

 Spring
  COS 461: Computer Networks
  COS 598b: Mobile Computing

 Fall
  COS518: Advanced Computer Systems
  COS429: Security
  Sometimes offered: COS 598A: Parallel Arch & Prog.

34

