GEOMETRIC APPLICATIONS OF BSTS

» 1d range search

» line segment intersection
» kd trees

» interval search trees

» rectangle intersection

Algorithms

FOURTH EDITION

Algorithms, 4™ Edition Robert Sedgewick and Kevin Wayne Copyright © 2002-2011 October 13,2011 6:22:18 AM

» 1d range search

Overview

This lecture. Intersections among geometric objects.

Applications. CAD, games, movies, virtual reality, VLST design, databases, ...

———

[

]

&

[]

2d orthogonal range search

orthogonal rectangle intersection

Efficient solutions. Binary search trees (and extensions).

1d range search

Extension of ordered symbol table.

* Insert key-value pair.
* Search for key k.
* Delete key .

* Range search: find all keys between ki and fo.

* Range count: number of keys between ki and ka.

Application. Database queries.

Geomeftric interpretation.
* Keys are point on a line.

* Find/count points in a given 1d interval.

insert B
insert D
insert A
insert |
insert H
insert F
insert P
count G to K

search G to K

B

B D

ABD
ABDI
ABDHTI
ABDFHI
ABDFHIP
2

HI

1d range search: implementations 1d range count: BST implementation

Unordered array. Fast insert, slow range search. 1d range count. How many keys between 10 and hi ?

node count N
Ordered array. Slow insert, binary search for ki and k2 to do range search.

data structure insert range count range search

unordered array 1 N N
ordered array N log N R +log N public int size (Key lo, Key hi)
{
goal log N log N R+log N if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank (hi) - rank(lo);
order of growth of running time for 1d range search } \
number of keys < hi
Parameters.
* N = number of keys. Proposition. Running time is proportional to log N (assuming BST is balanced).
* R = number of keys that match, «— "nning fime s output sensitive Pf. Nodes examined = search path to 10 + search path to ni.
(number of matching keys can be N)

1d range search: BST implementation

1d range search. Find all keys between 10 and hi.

* Recursively find all keys in left subtree (if any could fall in range).
* Check key in current node.

* Recursively find all keys in right subtree (if any could fall in range).

searching in therange [F..T]

red keys are used in compares
but are not in the range

» line segment intersection

Q black keys are
in the range

Range search in a BST

Proposition. Running time is proportional to R +log N (assuming BST is balanced).
Pf. Nodes examined = search path to 10 + search path to hi + matching keys.

Orthogonal line segment intersection search

Given N horizontal and vertical line segments, find all intersections.

= | [———
‘{ ‘ ‘fl}

Nondegeneracy assumption. All x- and y-coordinates are distinct.
Quadratic algorithm. Check all pairs of line segments for intersection.

Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

* x-coordinates define events.

* h-segment (left endpoint): insert y-coordinate into BST.

* h-segment (right endpoint): remove y-coordinate from BST.

H
| ---®- - @@ -
-

—1o

y-coordinates "

Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
 x-coordinates define events.
* h-segment (left endpoint): insert y-coordinate into BST.

y-coordinates

Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

* x-coordinates define events.

* h-segment (left endpoint): insert y-coordinate into BST.

* h-segment (right endpoint): remove y-coordinate from BST.
* v-segment: range search for interval of y-endpoints.

1
I
I
|
|
—1—o .

3 e 3
|

1 1 1d range
I
i |~ search
2 o——e :/

|

1 @ 1
>~ |
I
|
I

0 ? ® o
i
l I
I

y-coordinates

12

Orthogonal line segment intersection search: sweep-line algorithm analysis

Proposition. The sweep-line algorithm takes time proportional to Nlog N+ R
to find all R intersections among N orthogonal line segments.

Pf.

* Put x-coordinates on a PQ (or sort). «— NiogN

e Insert y-coordinates into BST. <«— Nlog N

* Delete y-coordinates from BST. «— NlogN

* Range searches in BST. «— NlogN+R

Bottom line. Sweep line reduces 2d orthogonal line segment intersection
search to 1d range search.

General line segment intersection search: implementation

Sweep-line algorithm.

* Maintain PQ of important x-coordinates: endpoints and intersections.

* Maintain set of segments intersecting sweep line, in BST sorted by y-
coordinates. 1

to support "next largest" and
"next smallest" queries

Proposition. The sweep-line algorithm takes time proportional to
Rlog N+ Nlog N to find all R intersections among N orthogonal line segments.

Implementation issues.

* Degeneracy.

* Floating-point precision.

* Must use PQ, not presort (intersection events are unknown ahead of time).

General line segment intersection search

Sweep-line algorithm.
* Maintain segments that intersect sweep line ordered by y-coordinate.
* Intersections can only occur between adjacent segments.

Delete/add line segment = one/two new pairs of adjacent segments.
 Intersection = swap adjacent segments.

a u\\
T >
B »\ e S ’<//'
>1 /> —o
< <
© \l
» e .
insert segment
5 '// [9
¢ ® delete segment
A AB ABC ACB | ACBD ACD CAD (CA (A ® intersection

order of segments that intersect sweep line

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

* Insert a 2d key.

* Delete a 2d key.

* Search for a 2d key.

* Range search: find all keys that lie in a 2d range.

* Range count: number of keys that lie in a 2d range.

Geometric interpretation.
* Keys are point in the plane. 0
* Find/count points in a given i-v rectangle. y

rectangle is axis-aligned

Applications. Networking, circuit design, databases.

2d orthogonal range search: grid implementation costs

Space-time tradeoff.
e Space: M?2+N.
* Time: 1 + N/M? per square examined, on average.

Choose grid square size to tune performance.
* Too small: wastes space.

* Too large: too many points per square.

* Rule of thumb: VN-by-VN grid.

Running time. [if points are evenly distributed] . . RfT .
* Initialize data structure: N. 5 *

% choose M ~ VN 0 0
L]

* Range search: 1 per point in range.

* Insert point: 1.

X

2d orthogonal range search: grid implementation

Grid implementation.
* Divide space into M-by-M grid of squares.

Create list of points contained in each square.
* Use 2d array to directly index relevant square.

Insert: add (x,) to list for corresponding square.
* Range search: examine only those squares that intersect 2d range query.

Clustering
6rid implementation. Fast and simple solution for evenly-distributed points.
Problem. Clustering a well-known phenomenon in geometric data.

o Lists are too long, even though average length is short.
* Need data structure that gracefully adapts to data.

e o 0.
LJ
0e®®
Pt

20

Clustering Space-partitioning trees

Grid implementation. Fast and simple solution for evenly-distributed points. Use a free to represent a recursive subdivision of 2d space.
Problem. Clustering a well-known phenomenon in geometric data. Grid. Divide space uniformly into squares.
Ex. USA map data. 2d tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

13,000 points, 1000 grid squares

half the squares are empty half the points are |
in 10% of the squares Grid 2d tree Quadtree BSP tree

Space-partitioning trees: applications 2d tree demo

Applications.

* Ray tracing.

* 2d range search.

* Flight simulators.

* N-body simulation.

* Collision detection.

* Astronomical databases.

* Nearest neighbor search.

* Adaptive mesh generation.

* Accelerate rendering in Doom.
* Hidden surface removal and shadow casting.

Grid 2d tree Quadtree BSP tree

2d tree

Recursively partition plane into two halfplanes.

2d tree demo: 2d orthogonal range search and nearest neighbor search

2d tree implementation

Data structure. BST, but alternate using x- and y-coordinates as key.
* Search gives rectangle containing point.
¢ Insert further subdivides the plane.

A T Za U

points points : points points
left of p right of p : | below g above q

even levels odd levels

80
6
9
3
5 10
a

~

26

2d tree: 2d orthogonal range search

Range search. Find all points in a query axis-alighed rectangle.

* Check if point in node lies in given rectangle.

* Recursively search left/bottom subdivision (if any could fall in rectangle).
* Recursively search right/top subdivision (if any could fall in rectangle).

Typical case. R+ log N.
Worst case (assuming free is balanced). R +VN.

28

2d tree: nearest neighbor search

Nearest neighbor search. Given a query point, find the closest point.

* Check distance from point in node to query point.

* Recursively search left/bottom subdivision (if it could contain a closer point).
* Recursively search right/top subdivision (if it could contain a closer point).

* Organize recursive method so that it begins by searching for query point.

Typical case. log N.
Worst case (even if tree is balanced). N.
query point

,, closest point = 5

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:

* Collision avoidance: point away from k nearest boids.

* Flock centering: point fowards the center of mass of k nearest boids.
* Velocity matching: update velocity to the average of k nearest boids.

31

Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings, cranes,

bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE

Kd tree
Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

level = i (mod k)
points points
whose ith whose ith
coordinate coordinate
is less than p’s is greater than p’s

Efficient, simple data structure for processing k-dimensional data.
* Widely used.

* Adapts well to high-dimensional and clustered data.

* Discovered by an undergrad in an algorithms class!

%)

y
)

Jon Bentley

30

32

N-body simulation Appel algorithm for N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity. Key idea. Suppose particle is far, far away from cluster of particles.
* Treat cluster of particles as a single aggregate particle.
» Compute force between particle and center of mass of aggregate particle.

http://www.youtube.com/watch?v=ua7YIN4eL_w

. o G
Brute force. For each pair of particles, compute force. F= %

Appel algorithm for N-body simulation

* Build 3d-free with N particles as nodes.

+ Store center-of-mass of subtree in each node.

* To compute total force acting on a particle, traverse tree, but stop as soon
as distance from particle to subdivision is sufficiently large.

SIAM J. SCL. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPELt H
» interval search trees
Abstract. The si of N particles ing ina itati force field is useful in astrophysics,

but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N = 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

Impact. Running time per step is Nlog N instead of N2 = enables new research.

35 36

1d interval search

1d interval search. Data structure to hold set of (overlapping) intervals.

e Insert an interval (lo, hi).
* Search for an interval (lo, hi).
» Delete an interval (lo, hi).

* Interval intersection query: given an interval (lo, ki), find all intervals

in data structure overlapping (lo, hi).

o—— (7,10) —eo

o—— (5,8)—o o— (17,19 —e

(4, 8) o—— (15,18) —e

— (21,24)—e

Interval search trees

Create BST, where each node stores an interval (lo, hi).
* Use left endpoint as BST key.
+ Store max endpoint in subtree rooted at node.

(] 7,]9) 24
/ PASINN
binary search tree ((21, 24)) 24
(left endpoint is key) \ \/\i/\
A% (s 18
(4,8) 8 (15,18)) 18
&8 &1 N
f max endpoint in
/ \ subtree rooted at node
/(7, IO)\\ 10

37

39

Interval search trees

public class

IntervalST<Key extends Comparable<Key>, Value>

void

Value

void

Iterable<Value>

IntervalST() create interval search tree

put (Key lo, Key hi, Value val) put interval-value pair into ST

get(Key lo, Key hi) value paired with given interval

delete (Key lo, Key hi) delete the given interval

A . all intervals that intersect
intersects (Key lo, Key hi) . .
the given interval

Nondegeneracy assumption. No two intervals have the same left endpoint.

38

Interval search tree demo

40

Insert an interval

To insert an interval (lo, hi):

* Insert into BST, using /o as the key.

* Update max in each node on search path.

insert (16, 22)
Ql 7,19)) 24
<(§ é)) 18 6217 24) 24
((1/57, lS)) 18

Cas s

<(7 1 0)> 10

Search for an intersecting interval

after insertion P
((17, 19)) 24

(60 2 (@
Ceo) (@s.19) 22

() 22

41

To search for an interval that intersects query interval (lo, hi):

* If interval in node intersects query interval, return it.

* If left subtree is null, go right.

* If max endpoint in left subtree is less than lo, go right.

* Else go left.

Case 1. If search goes right, then no intersection in left.

Pf.
e Left subtree is null = trivial.

* Max endpoint max in left subtree is less than lo =

for any interval (a, b) in left subtree of x,

we have b < max < lo.

/N

definition of max reason for going right

(c, max)

(a, b) : (lo, hi)

left subtree of x right subtree of x

43

Search for an intersecting interval

To search for an interval that intersects query interval (lo, hi):
» Start at root.

* If subtree is empty, return not found.

* Else if interval in node intersects query interval, return it.

* Else if left subtree is empty, go right.

* Else if max endpoint in left subtree is less than lo, go right.

* Else go left.

Node x = root;

while (x !'= null)
{
if (x.interval.intersects(lo, hi)) return x.interval;
else if (x.left == null) x = x.right;
else if (x.left.max < lo) X = x.right;
else x = x.left;

}

return null;

Search for an intersecting interval

To search for an interval that intersects query interval (o, hi):
 If interval in node intersects query interval, return it.

* If left subtree is null, go right.

* If max endpoint in left subtree is less than lo, go right.

* Else go left.

Case 2. If search goes left, then there is either an intersection in left
subtree or no intersections in either.

Pf. Suppose no intersection in left.
* Since went left, we have lo < max.

* Then for any interval (a, b) in right subtree of x,

max
hi <c¢ < a = no intersection in right.

/N

no intersections intervals sorted
in left subtree by left endpoint

(c, max)

(lo, hi) (a, b)

left subtree of x right subtree of x

42

44

Interval search tree: analysis

Implementation. Use a red-black BST to guarantee performance.

can maintain auxiliary information
using log N extra work per op

. interval best
operation brute)
search tree in theory
1

insert interval

log N log N

find interval N log N log N

delete interval N log N log N

oW e
il S TN

order of growth of running time for N intervals

Orthogonal rectangle intersection search

Goal. Find all intersections among a set of N orthogonal rectangles.

3 —

p— 2

Non-degeneracy assumption. All x- and y-coordinates are distinct.
Quadratic algorithm. Check all pairs of rectangles for intersection.

45

47

» rectangle intersection

46

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
 Very Large Scale Integration (VLSI).
» Computer-Aided Design (CAD).

Design-rule checking.

* Certain wires cannot intersect.

* Certain spacing needed between different types of wires.
* Debugging = orthogonal rectangle intersection search.

i i LSBT
| [y b=
L!ﬂ-j'u uri

48

Orthogonal rectangle intersection search: sweep-line algorithm

Sweep vertical line from left to right.

* x-coordinates of left and right endpoints define events.

* Maintain set of rectangles that intersect the sweep line in an interval

search tree (using y-intervals of rectangle).

* Left endpoint: interval search for y-interval of rectangle; insert y-interval.

Right endpoint: remove y-interval.

L

L&

Geometric applications of BSTs

problem example solution

1d range search

2d orthogonal line segment
intersection search

kd range search

1d interval search

2d orthogonal rectangle
intersection search

—e —e

——e oo

[
I

Ogod

y-

coordinates

BST

sweep line reduces to
1d range search

kd tree

interval search tree

sweep line reduces to
1d interval search

49

Orthogonal rectangle intersection search: sweep-line algorithm analysis

Proposition. Sweep line algorithm takes time proportional to Nlog N+ R log N
to find R intersections among a set of N rectangles.

Pf.

e Put x-coordinates on a PQ (or sort). <«— NlogN
 Insert y-intervals into ST. <« NlogN
 Delete y-intervals from ST. «— NlogN

 Interval searches for y-intervals. «— NlogN+RlogN

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection search
to 1d interval search.

50

