4.4 SHORTEST PATHS

Algorithms

- ▶ edge-weighted digraph API

- ▶ edge-weighted DAGs
- ▶ negative weights

Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · November 14, 2011 6:58:25 AM Algorithms, 4th Edition

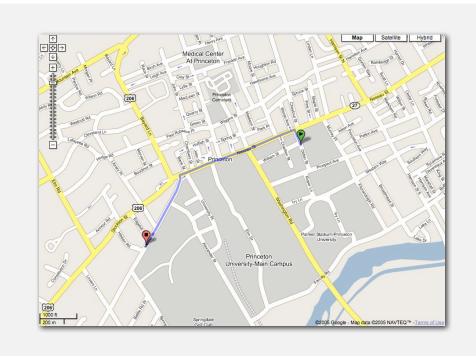
- ▶ shortest-paths properties
- ▶ Dijkstra's algorithm

Continental U.S. routes (August 2010)

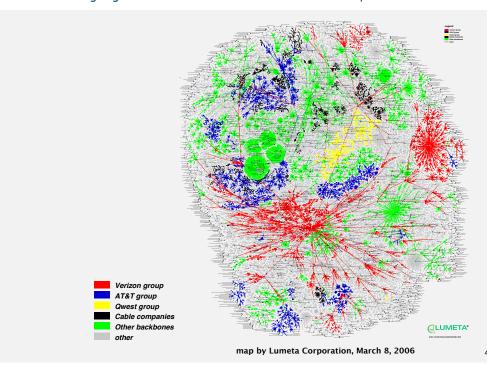


http://www.continental.com/web/en-US/content/travel/routes

Google maps

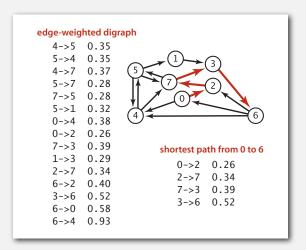


Shortest outgoing routes on the Internet from Lumeta headquarters



Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to t.



Shortest path applications

- · Map routing.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Subroutine in advanced algorithms.
- Routing of telecommunications messages.
- · Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?

- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- · Nonnegative weights.
- · Arbitrary weights.
- Euclidean weights.

Cycles?

- · No cycles.
- No "negative cycles."

Simplifying assumption. There exists a shortest path from s to each vertex v.

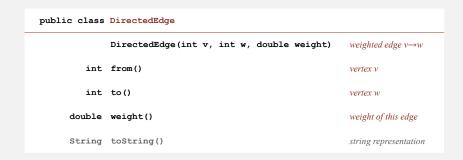
▶ edge-weighted digraph API

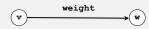
- > shortest-paths properties
- ▶ Dijkstra's algorithm
- ▶ edge-weighted DAG
- ▶ negative weights

7

.

Weighted directed edge API





Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Eage for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
   private final int v, w;
   private final double weight;

public DirectedEdge(int v, int w, double weight)
   {
      this.v = v;
      this.w = w;
      this.weight = weight;
   }

public int from()
   { return v; }

public int to()
   { return w; }

public int weight()
   { return weight; }
}
```

Edge-weighted digraph API

```
public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph(In in) edge-weighted digraph from input stream

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges pointing from v

int V() number of vertices

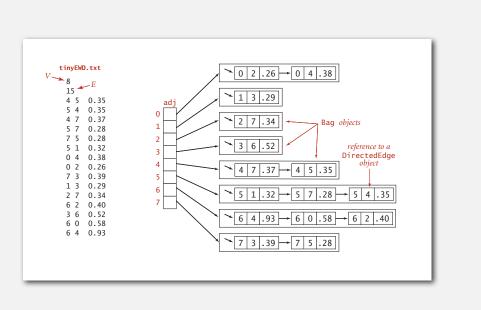
int E() number of edges

Iterable<DirectedEdge> edges() all edges

String toString() string representation
```

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
{
   private final int V;
   private final Bag<Edge>[] adj;

   public EdgeWeightedDigraph(int V)
   {
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
           adj[v] = new Bag<DirectedEdge>();
   }

   public void addEdge(DirectedEdge e)
   {
      int v = e.from();
      adj [v].add(e);
   }

   public Iterable<DirectedEdge> adj(int v)
   { return adj[v]; }
}
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
Public class SP

SP (EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38   4->5 0.35   5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26   2->7 0.34   7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38   4->5 0.35
0 to 6 (1.51): 0->2 0.26   2->7 0.34   7->3 0.39   3->6 0.52
0 to 7 (0.60): 0->2 0.26   2->7 0.34
```

edge-weighted digraph AP

→ shortest-paths properties

- Dijkstra's algorithm
- ▶ edae-weiahted DAGs
- ▶ negative weights

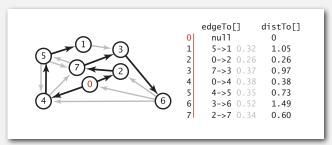
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



shortest-paths tree from 0

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v)
{    return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update dist[w] and edge[w].

Shortest-paths optimality conditions

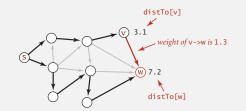
Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

$Pf. \leftarrow [necessary]$

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



18

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

```
Pf. \Rightarrow [sufficient]
```

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k = w$ is a shortest path from s to w.
- $\begin{array}{lll} \bullet & Then, & \text{distTo}[\mathbf{v}_k] & \leq & \text{distTo}[\mathbf{v}_{k-1}] & + & \mathbf{e}_k.\text{weight}() \\ & & \text{distTo}[\mathbf{v}_{k-1}] & \leq & \text{distTo}[\mathbf{v}_{k-2}] & + & \mathbf{e}_{k-1}.\text{weight}() \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$
- Add inequalities; simplify; and substitute $distTo[v_0] = distTo[s] = 0$:

weight of some path from s to w

weight of shortest path from s to w

• Thus, distTo[w] is the weight of shortest path to w. ■

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Proposition. Generic algorithm computes SPT from s. \longleftrightarrow assuming SPT exists Pf sketch.

- Throughout algorithm, $\operatorname{distTo}[v]$ is the length of a simple path from s to v and $\operatorname{edgeTo}[v]$ is last edge on path.
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times. •

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?

- $\mathsf{Ex}\ 1.$ Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

▶ edge-weighted digraph AP

→ shortest-paths properties

▶ Dijkstra's algorithm

- edge-weighted DAG
- ▶ negative weights

Edsger W. Dijkstra: select quotes

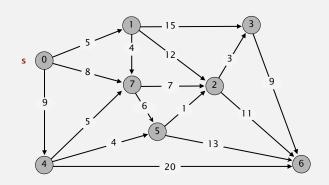
- "Do only what only you can do."
- "In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- "It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- "APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distance] value).
- Add vertex to tree and relax all edges pointing from that vertex.

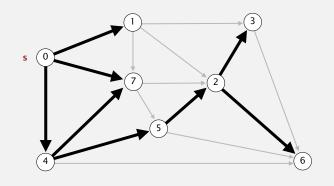


an edge-weighted digraph

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distro[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

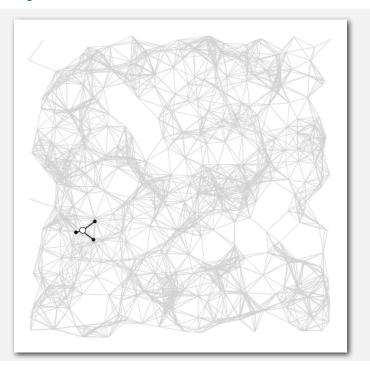


0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

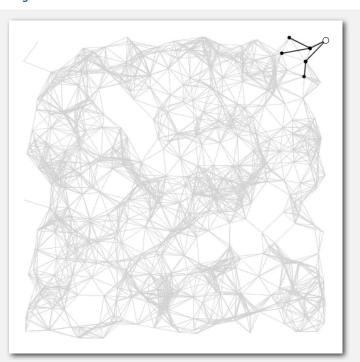
distTo[] edgeTo[]

shortest-paths tree from vertex s

Dijkstra's algorithm visualization



Dijkstra's algorithm visualization



Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed),
 leaving distTo[v] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] cannot increase ← distTo[] values are monotone decreasing
- distTo[v] will not change edge weights are nonnegative and we choose lowest distTo[] value at each step
- \bullet Thus, upon termination, shortest-paths optimality conditions hold. \blacksquare

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
  private DirectedEdge[] edgeTo;
  private double[] distTo;
  private IndexMinPQ<Double> pq;
  public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
     distTo = new double[G.V()];
     pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
     distTo[s] = 0.0;
     pq.insert(s, 0.0);
                                                             relax vertices in order
     while (!pq.isEmpty())
                                                             of distance from s
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

Dijkstra's algorithm: Java implementation

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	V	1	V ²
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)	1 †	log V †	1 †	E + V log V

† amortized

Bottom line.

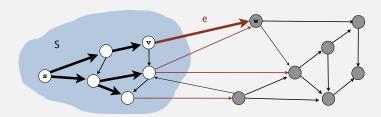
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.
- DFS. Take edge from vertex which was discovered most recently.
- BFS. Take edge from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.



Challenge. Express this insight in reusable Java code.

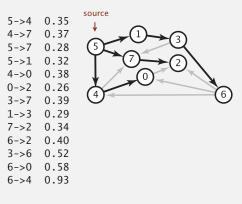
- ▶ edge-weighted digraph AP
- shortest-paths properties
- ▶ Dijkstra's algorithm
- ▶ edge-weighted DAGs
- negative weights

3

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!



Shortest paths in edge-weighted DAGs

Topological sort algorithm.

- Consider vertices in topologically order.
- Relax all edges pointing from vertex.

37

Shortest paths in edge-weighted DAGs

Topological sort algorithm.

- Consider vertices in topologically order.
- Relax all edges pointing from vertex.

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to E+V.

Pf.

- Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving distTo[w] \leq distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
 - distTo[w] Cannot increase

 distTo[] values are monotone decreasing
- distTo[v] Will not change because of topological order, no edge pointing to v will be relaxed after v is relaxed
- ullet Thus, upon termination, shortest-paths optimality conditions hold. ullet

Shortest paths in edge-weighted DAGs

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.

equivalent: reverse sense of equality in relax()

• Negate weights in result.

longest paths input	shortest paths input	
5->4 0.35	5->4 -0.35	
4->7 0.37	4->7 -0.37	
5->7 0.28	5->7 -0.28	_
5->1 0.32	5->1 -0.32	-(1)(2)
4->0 0.38	4->0 -0.38	\odot
0->2 0.26	0->2 -0.26	7 7
3->7 0.39	3->7 -0.39	
1->3 0.29	1->3 -0.29	
7->2 0.34	7->2 -0.34	(4)
6->2 0.40	6->2 -0.40	
3->6 0.52	3->6 -0.52	
6->0 0.58	6->0 -0.58	
6->4 0.93	6->4 -0.93	

Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

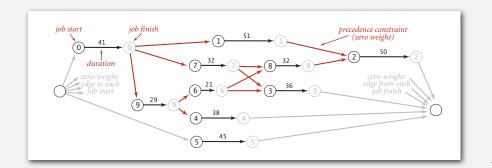
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time while respecting the constraints.

job	duration	mus	t comp before	olete											
0	41.0	1	7	9											
1	51.0	2													
2	50.0														
3	36.0														
4	38.0														
5	45.0								1						
6	21.0	3	8					7				3			
7	32.0	3	8			0		9		6	8			2	
8	32.0	2				5				4					
9	29.0	4	6		0		41		T 70	9	1	12	3		173
								Para	llel job	sched	uling sol	ution			

Critical path method

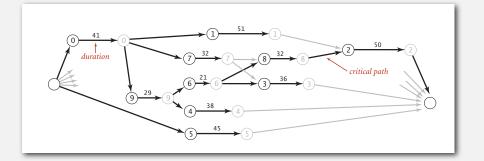
CPM. To solve a parallel job-scheduling problem, create acyclic edge-weighted digraph:

Source and sink vertices.	jo	b duratio		st com before	
Two vertices (begin and end) for each job.	() 41.0 I 51.0	_	7	
Three edges for each job.	:	2 50.0	_		
· ·		36.0 4 38.0			
- begin to end (weighted by duration)		5 45.0			
- source to begin (0 weight)		5 21.0 7 32.0	-	8	
- end to sink (0 weight)		32.0	_		
		9 29.0	4	О	



Critical path method

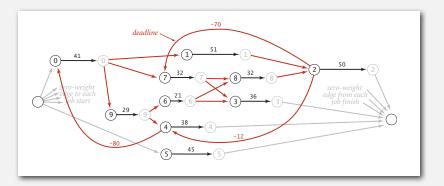
CPM. Use longest path from the source to schedule each job.



42

Deep water

Deadlines. Add extra constraints to the parallel job-scheduling problem. Ex. "Job 2 must start no later than 12 time units after job 4 starts."



Consequences.

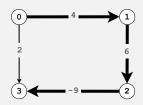
- Corresponding shortest-paths problem has cycles (and negative weights).
- Possibility of infeasible problem (negative cycles).

- edge-weighted digraph AP
- shortest-paths properties
- ▶ Dijkstra's algorithm
- edge-weighted DAGs
- ▶ negative weights

45

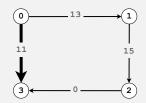
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

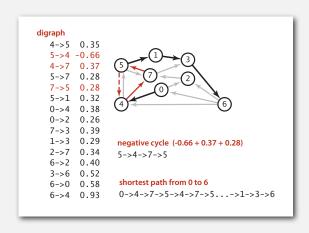


Adding 9 to each edge weight changes the shortest path from $0\rightarrow 1\rightarrow 2\rightarrow 3$ to $0\rightarrow 3$.

Bad news. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.



Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s

Shortest paths with negative weights: dynamic programming algorithm

Dynamic programming algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

```
for (int i = 1; i <= G.V(); i++)
  for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v))
        relax(e);</pre>
phase i (relax each edge)
```

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$. Pf idea. After phase i, found shortest path containing at most i edges.

Bellman-Ford algorithm

Observation. If distTo[v] does not change during phase i, no need to relax any edge incident from v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distro[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

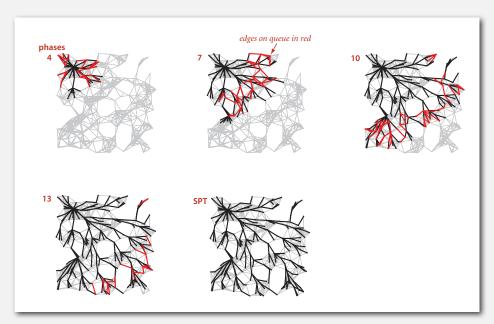
Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

5

Bellman-Ford algorithm demo

Bellman-Ford algorithm visualization



Bellman-Ford algorithm: Java implementation

```
public class BellmanFordSP
  private double[] distTo;
  private DirectedEdge[] edgeTo;
                                                                    queue of vertices whose
  private boolean[] onQ;
                                                                    distTo[] value changes
  private Queue<Integer> queue;
  public BellmanFordSPT(EdgeWeightedDigraph G, int s)
     distTo = new double[G.V()];
     edgeTo = new DirectedEdge[G.V()];
     ong = new boolean[G.V()];
     queue = new Queue<Integer>();
                                                   private void relax(DirectedEdge e)
     for (int v = 0; v < V; v++)
                                                      int v = e.from(), w = e.to();
        distTo[v] = Double.POSITIVE INFINITY;
                                                      if (distTo[w] > distTo[v] + e.weight())
     distTo[s] = 0.0;
                                                          distTo[w] = distTo[v] + e.weight();
     queue.enqueue(s);
                                                          edgeTo[w] = e;
     while (!queue.isEmpty())
                                                          if (!onQ[w])
        int v = queue.dequeue();
                                                             queue.enqueue(w);
        onQ[v] = false;
                                                             onQ[w] = true;
        for (DirectedEdge e : G.adj(v))
           relax(e);
```

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
dynamic programming	no negative	EV	ΕV	V
Bellman-Ford	cycles	E + V	ΕV	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

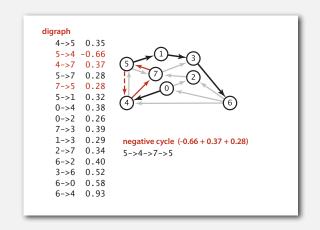
Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

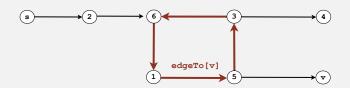
boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s



Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeto[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros} \Rightarrow 1,012.206 \text{ Canadian dollars} \Rightarrow $1,007.14497.$

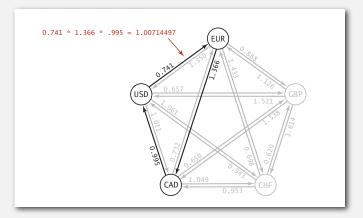
 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

57

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

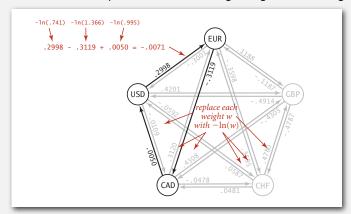


Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.