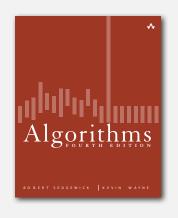
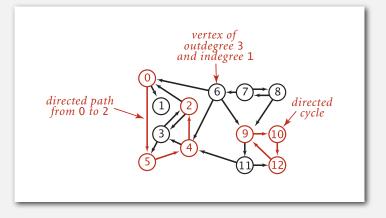
# 4.2 DIRECTED GRAPHS

#### Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.



- digraph APIdigraph search
- topological sort
- strong components



2

# Road network

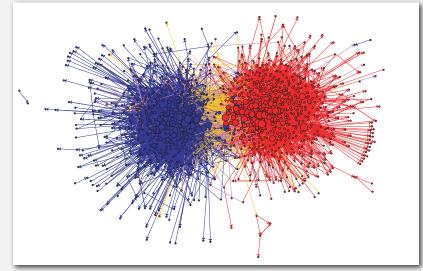
Vertex = intersection; edge = one-way street.



Algorithms, 4<sup>th</sup> Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · November 7, 2011 6:30:59 AM

# Political blogosphere graph

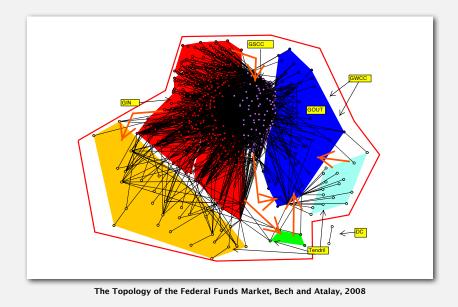
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

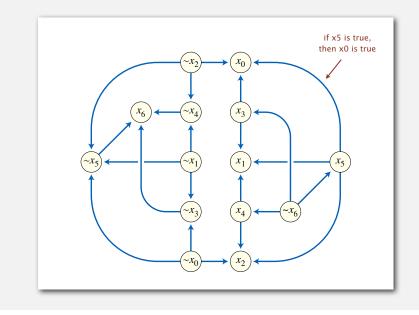
# Overnight interbank loan graph

Vertex = bank; edge = overnight loan.



# Implication graph

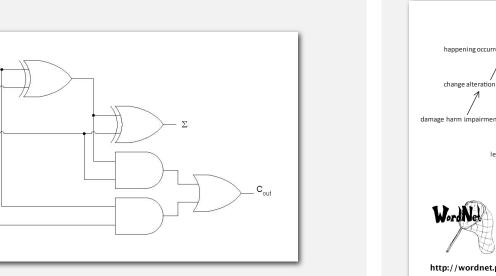
Vertex = variable; edge = logical implication.



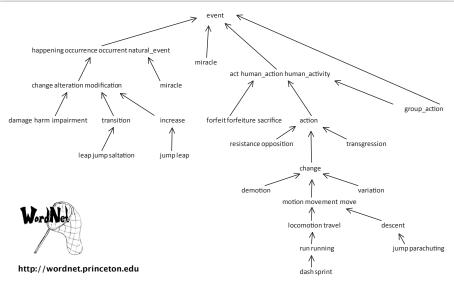
6

8

# WordNet graph



Vertex = synset; edge = hypernym relationship.



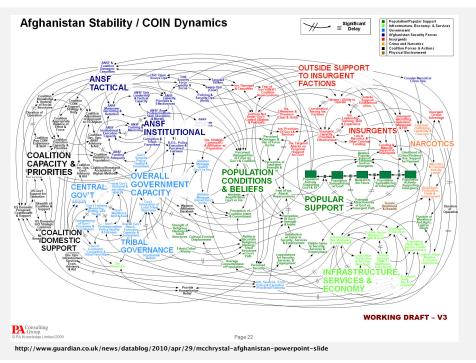
# Combinational circuit

Vertex = logical gate; edge = wire.

в

Cir

#### The McChrystal Afghanistan PowerPoint slide



# **Digraph applications**

| digraph               | vertex              | directed edge              |
|-----------------------|---------------------|----------------------------|
| transportation        | street intersection | one-way street             |
| web                   | web page            | hyperlink                  |
| food web              | species             | predator-prey relationship |
| WordNet               | synset              | hypernym                   |
| scheduling            | task                | precedence constraint      |
| financial             | bank                | transaction                |
| cell phone            | person              | placed call                |
| infectious disease    | person              | infection                  |
| game                  | board position      | legal move                 |
| citation              | journal article     | citation                   |
| object graph          | object              | pointer                    |
| inheritance hierarchy | class               | inherits from              |
| control flow          | code block          | jump                       |

# Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

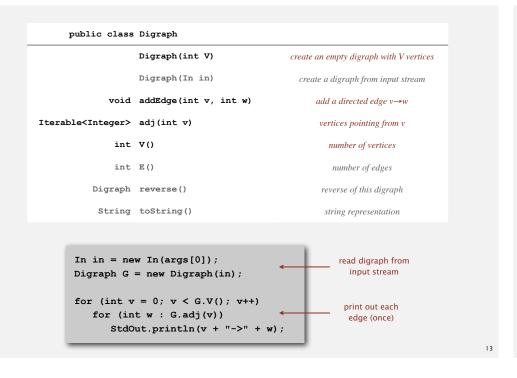
PageRank. What is the importance of a web page?

# digraph API

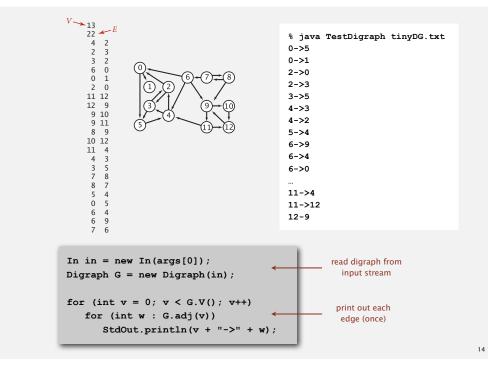
digraph search

topological sort

strong components

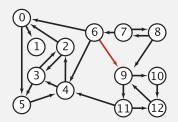


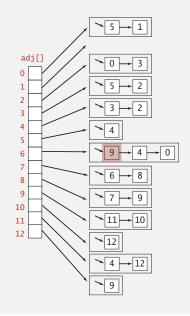
# Digraph API



#### Adjacency-lists digraph representation

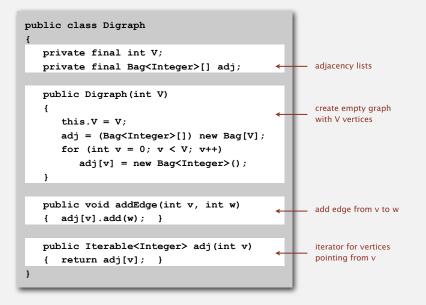
Maintain vertex-indexed array of lists (use Bag abstraction).





# Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.



#### Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

# huge number of vertices, small average vertex degree

| representation   | space | insert edge<br>from ∨ to w | edge from<br>v to w? | iterate over vertices pointing from v? |
|------------------|-------|----------------------------|----------------------|----------------------------------------|
| list of edges    | E     | 1                          | E                    | E                                      |
| adjacency matrix | V 2   | 1 †                        | 1                    | V                                      |
| adjacency lists  | E + V | 1                          | outdegree(v)         | outdegree(v)                           |

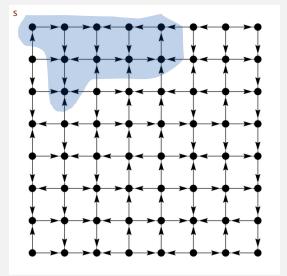
† disallows parallel edges



17

### Reachability

Problem. Find all vertices reachable from s along a directed path.



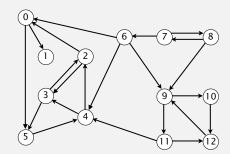
#### Depth-first search in digraphs

Same method as for undirected graphs.

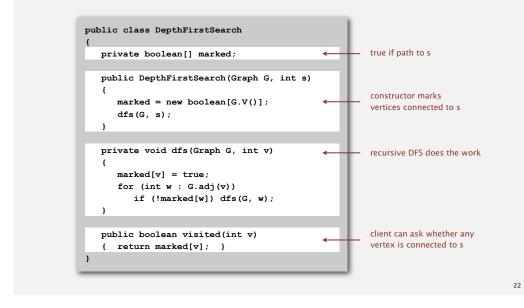
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited. Recursively visit all unmarked vertices w pointing from v.

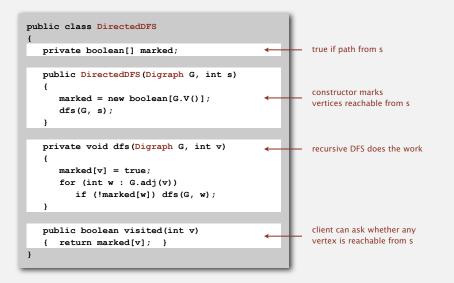


Recall code for undirected graphs.



# Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]



#### Reachability application: program control-flow analysis

#### Every program is a digraph.

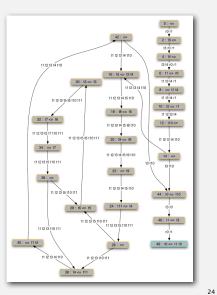
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

#### Dead-code elimination.

Find (and remove) unreachable code.

#### Infinite-loop detection.

Determine whether exit is unreachable.

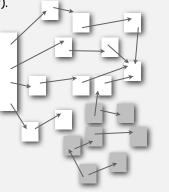


#### Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).



#### Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
  - Path finding.
  - Topological sort.
  - Directed cycle detection.
  - Transitive closure.

Basis for solving difficult digraph problems.

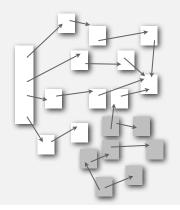
- Directed Euler path.
- Strongly-connected components.

Reachability application: mark-sweep garbage collector

# Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.



#### Breadth-first search in digraphs

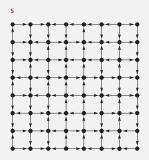
Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

#### BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex  $\boldsymbol{v}$
- for each unmarked vertex pointing from v: add to queue and mark as visited..

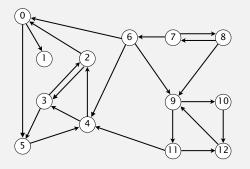


Proposition. BFS computes shortest paths (fewest number of edges).

#### Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to a target vertex v.

Ex. Shortest path from  $\{1, 7, 10\}$  to 5 is  $7 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 5$ .



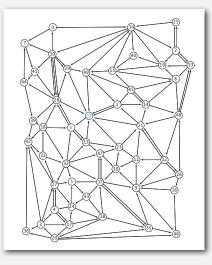
- Q. How to implement multi-source constructor?
- A. Use BFS, but initialize by enqueuing all source vertices.

#### Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

#### BFS.

- Choose root web page as source s.
- Maintain a gueve of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Q. Why not use DFS?

#### Bare-bones web crawler: Java implementation



→ digraph API

digraph search

# topological sort

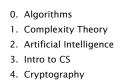
strong components

29

#### Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

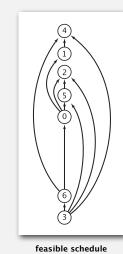
Graph model. vertex = task; edge = precedence constraint.



- 5. Scientific Computing
- 6. Advanced Programming

tasks

precedence constraint graph

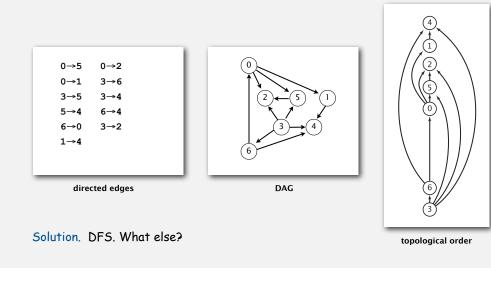


33

**Topological sort** 

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.



# Depth-first search order



Topological sort demo

|                   |         | marked[]                   | reversePost   |                                                                     |
|-------------------|---------|----------------------------|---------------|---------------------------------------------------------------------|
|                   | dfs(0)  | 1000000                    | _             |                                                                     |
| ×                 | dfs(1)  | 1100000                    | -             | (4)                                                                 |
|                   | dfs(4)  | 1 1 0 0 <mark>1</mark> 0 0 | -             |                                                                     |
|                   | 4 done  | 1 1 0 0 1 0 0              | 4             | /(1)                                                                |
|                   | 1 done  | 1 1 0 0 1 0 0              | 4 1           | 1/2                                                                 |
| $3 \rightarrow 4$ | dfs(2)  | 1 1 <mark>1</mark> 0 1 0 0 | 4 1           |                                                                     |
|                   | 2 done  | 1 1 1 0 1 0 0              | 4 1 2         | $///\pm$                                                            |
| 6                 | dfs(5)  | 1 1 1 0 1 <mark>1</mark> 0 | 4 1 2         | $  \langle ((5) \rangle \rangle$                                    |
| J                 | check 2 | 1 1 1 0 1 1 0              | 4 1 2         |                                                                     |
|                   | 5 done  | 1 1 1 0 1 1 0              | 4 1 2 5       |                                                                     |
| 0→5               | 0 done  | 1 1 1 0 1 1 0              | 41250         | $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ |
| 0→2               | check 1 | 1 1 1 0 1 1 0              | 4 1 2 5 0     |                                                                     |
| 0.1               | check 2 | 1 1 1 0 1 1 0              | 4 1 2 5 0     |                                                                     |
| 0→1               | dfs(3)  | 1 1 1 <mark>1</mark> 1 1 0 | 4 1 2 5 0     |                                                                     |
| 3→6               | check 2 | 1 1 1 1 1 1 0              | 4 1 2 5 0     |                                                                     |
| 3→5               | check 4 | 1 1 1 1 1 1 0              | 4 1 2 5 0     |                                                                     |
|                   | check 5 | 1 1 1 1 1 1 0              | 4 1 2 5 0     |                                                                     |
| 3→4               | dfs(6)  | 1 1 1 1 1 1 <mark>1</mark> | 4 1 2 5 0     | 9///                                                                |
| 5→4               | 6 done  | 1 1 1 1 1 1 1              | 412506        |                                                                     |
| 6→4               | 3 done  | 1 1 1 1 1 1 1              | 4125063       | 3                                                                   |
|                   | check 4 | 1 1 1 1 1 1 0              | 4 1 2 5 0 6 3 | 250                                                                 |
| 6→0               | check 5 | 1 1 1 1 1 1 0              | 4 1 2 5 0 6 3 | reverse DFS                                                         |
| 3→2               | check 6 | 1 1 1 1 1 1 0              | 4 1 2 5 0 6 3 | postorder is a                                                      |
| 1→4               | done    | 1 1 1 1 1 1 1              | 4 1 2 5 0 6 3 | topological order!                                                  |

# Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge  $v \rightarrow w$ . When dfs (G, v) is called:

- Case 1: dfs (G, w) has already been called and returned. Thus, w was done before v.
- Case 2: dfs(G, w) has not yet been called. It will get called directly or indirectly by dfs(G, v) and will finish before dfs(G, v). Thus, w will be done before v.
- Case 3: dfs(G, w) has already been called, but has not returned.

Can't happen in a DAG: function call stack contains path from w to v, so  $v \rightarrow w$  would complete a cycle.

> all vertices adjacent from 3 are done before 3 is done, so they appear after 3 in topological order

Ex: -

case

case 2

40

dfs(0) dfs(1) dfs(4)

0 done check 1

check 2

check

check 4 check 5 dfs(6)

6 done 3 done

check 4

check 5

check 6

done

dfs(3)

4 done 1 done

check 2 5 done

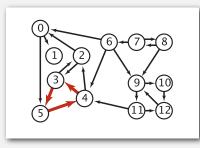
dfs(2) 2 done dfs(5)

#### Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.



Solution, DFS, What else? See textbook.

#### Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

| PAGE 3              |            |                                                                            |          |
|---------------------|------------|----------------------------------------------------------------------------|----------|
| DEPARTMENT          | COURSE     | DESCRIPTION                                                                | PREREQS  |
| COMPUTER<br>SCIENCE | CP5C 432   | INTERMEDIATE COMPILER<br>DESIGN, WITH A FOCUS ON<br>DEPENDENCY RESOLUTION. | CPSC 432 |
| 0                   | Occas Lime | CONTRACTOR CONTRACTOR DEPONICIAL                                           | C        |

http://xkcd.com/754

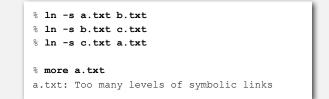
Remark. A directed cycle implies scheduling problem is infeasible.

#### The Java compiler does cycle detection.



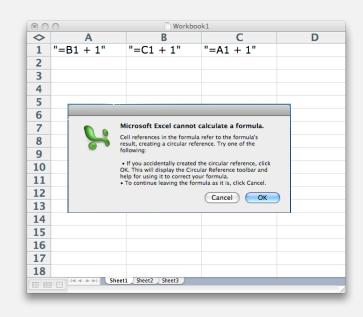
#### Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.



#### Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)



#### Directed cycle detection application: WordNet

The WordNet database (occasionally) has directed cycles.



# strong components

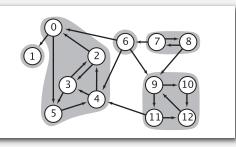
#### Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

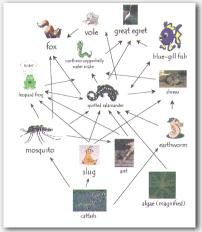
- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

#### Def. A strong component is a maximal subset of strongly-connected vertices.



# Strong component application: ecological food webs

#### Food web graph. Vertex = species; edge = from producer to consumer.

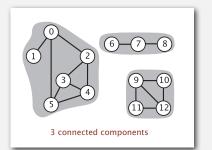


http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

# Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w



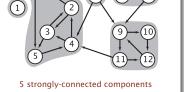
connected component id (easy to compute with DFS)

|      | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|------|---|---|---|---|---|---|---|---|---|---|----|----|----|
| cc[] | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2  | 2  | 2  |

| 2000<br>{ |        | <pre>cted(int v, int w) == cc[w]; }</pre> |
|-----------|--------|-------------------------------------------|
| ľ         | recuri | •                                         |

constant-time client connectivity query

v and w are strongly connected if there is a directed path from v to w and a directed path from w to v



strongly-connected component id (how to compute?)

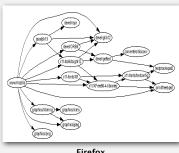
|       | 0                                                     | 1      | 2    | 3     | 4     | 5   | 6    | 7   | 8     | 9   | 10  | 11  | 12 |
|-------|-------------------------------------------------------|--------|------|-------|-------|-----|------|-----|-------|-----|-----|-----|----|
| scc[] | 1                                                     | 0      | 1    | 1     | 1     | 1   | 3    | 4   | 4     | 2   | 2   | 2   | 2  |
|       |                                                       |        |      |       |       |     |      |     |       |     |     |     |    |
|       |                                                       |        |      |       |       |     |      |     |       |     |     |     |    |
| -     | <pre>public int stronglyConnected(int v, int w)</pre> |        |      |       |       |     |      |     |       |     |     |     |    |
| 1 1   | { return scc[v] == scc[w]; }                          |        |      |       |       |     |      |     |       |     |     |     |    |
| _     | -                                                     |        | -    |       |       | -   | -    | -   |       |     | -   | -   |    |
| cons  | star                                                  | it-tii | me ( | clier | it st | ron | g-co | nne | ectiv | ity | que | ery |    |

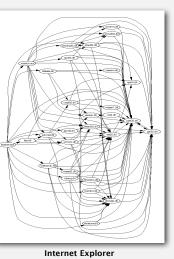
47

45

#### Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.





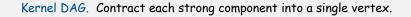
Firefox

Strong component. Subset of mutually interacting modules. Approach 1. Package strong components together. Approach 2. Use to improve design!

49

# Kosaraju's algorithm: intuition

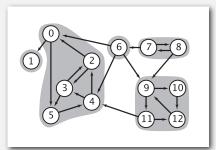
Reverse graph. Strong components in G are same as in  $G^R$ .

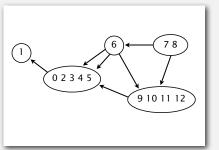


#### Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.





digraph G and its strong components

kernel DAG of G

# Strong components algorithms: brief history

# 1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

# 1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

#### 1980s: easy two-pass linear-time algorithm (Kosaraju).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

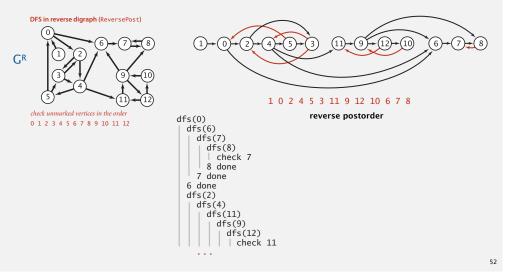
#### 1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

# Kosaraju's algorithm

# Simple (but mysterious) algorithm for computing strong components.

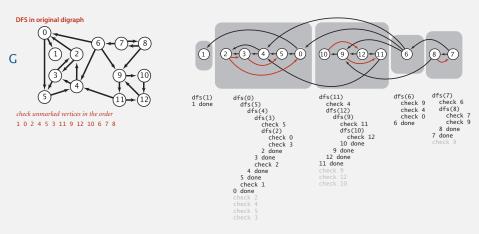
- Run DFS on *G<sup>R</sup>* to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



# Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on *G<sup>R</sup>* to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.



53

Proposition. Second DFS gives strong components. (!!)