Symbol table review

3.3 BALANCED SEARCH TREES

guarantee average case)
ordered operations

implementation .)
iteration? on keys
seart insert | delete | search hit insert delete
N N N N/2 N N/2

sequential search
1
(linked list) no squats()
binary search N N Ig N N/2 N/2 es compareTo()
(ordered array) 9 9 4 e
» 2-3 search trees
BST N N N 1.39IgN 1.391IgN ? es compareTo ()
» red-black BSTs g g Y
: » B-trees
AlgO I'lth m S goal log N log N log N log N log N log N yes compareTo ()
Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.
\ introduced to the world
Algorithms, 4™ Edition 0 Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - October 18,2011 6:58:42 AM in COS 226, Fall 2007

2-3 tree

Allow 1 or 2 keys per node.
* 2-node: one key, two children.
* 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

» 2-3 search trees

between E and J \null ll}’lk

Search ina 2-3 tree

» Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so

look to the left “\ m

B is less than M so

look to the left A m

H is between E and L so Bis lﬂi55 than E
look in the middle so look to the left
NGER

@
t

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

found H so return value (search hit)

Insertion ina 2-3 ftree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key? . i
inserting Z

()

search for Z ends
/ at this 3-node

replace 3-node with
temporary 4-node
/cnntaining z

replace 2-node
with new 3-node

.~ containing

dle key
® @

N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
* Search for key, as usual.
* Replace 2-node with 3-node.

inserting K

Q

(L)
™

search for K ends here

AN replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.
* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

inserting D add middle key C to 3-node
m to make temporary 4-node
search for D ends N\
at this 3-node \
@ ©
split 4-node into two 2-nodes
add new key D to 3-node pass middle key to parent

to make temporary 4-node

add middle key E to 2-node
to make new 3-node ~

ACD (E M)
© @

5

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 free

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node fo create temporary 4-node.

* Move middle key in 4-node into parent.

* Repeat up the tree, as necessary.

 If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D add middle key C to 3-node

to make temporary 4-node
search for D ends i

at this 3-node \
@ @

add new key D to 3-node

lit 4-node into two 2-nod
to make temporary 4-node split d-noce inio two =rodes

pass middle key to parent

split 4-node into
ACD three 2-nodes -
increasing tree
height by 1
Remark. Splitting the root increases height by 1.
2-3 tree construction frace
The same keys inserted in ascending order.
insert A @ P G m m
c LR
E G R

[>)
Q)

QR P
.t
a;j ’
=)
o 29 B

2-3 tree construction trace

Standard indexing client.

insertS @
E X
A
aee g ER
R ®
(R'S) P (M)
: CERG
C ® (H) (P)
) ®
@®
H
OR6,

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant humber of operations.

bcd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dande than e
a c e
less between\ /between\ /between\ /between greater
than a aandb band c candd dande than e

Global properties ina 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root L @
o3

parent is a 2-node

left @ _, (o

oflc

right (@) — (a) right
ORC,

parent is a 3-node

Ief (@O

middle (a e)
bcd

(a b

. Sbde
OO,
., face
(b) (d)
. febd)
(0 Te)

ST implementations: summary

guarantee average case
. . ordered
implementation . .
. _ . iteration?
search | insert | delete | search hit insert delete
N N/2 N

sequential search

(linked list) N N
(:irZ:st e;::t) e N N
BST N N .

2-3 tree clgN clgN clg N

N/2

Ig N N/2 N/2
1.39IgN 1.391gN ?
clgN clgN clgN

operations
on keys

no equals ()

yes compareTo ()
yes compareTo ()
yes compareTo ()

T~

constants depend upon
implementation

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
* Worst case: IgN. [all 2-nodes]
logs N =.6311gN. [all 3-nodes]

» Between 12 and 20 for a million nodes.

* Best case:
» Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: implementation?

Direct implementation is complicated, because:

* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.

* Need to move back up the tree to split 4-nodes.
* Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

» red-black BSTs

An equivalent definition

A BST such that:

* No node has two red links connected to it.

* Every path from root to null link has the same number of black links.

* Red links lean left.

N\

"perfect black balance"

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node
less between greater greater

thana) (aandb) (_thanb than b

larger key is root

less between
than a aandb

black links connect

et 1118 et 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

21

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else ‘£ (cmp == 0) return x.val;

}

return null;

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before)
private Node rotateLeft(Node h)

{
assert isRed(h.right) ;
Node x = h.right;

X h.right = x.left;
less x.left = h;
than E x.color = h.color;
h.color = RED;
between greater B 235
EandS than S }

Invariants. Maintains symmetric order and perfect black balance.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED true;
private static final boolean BLACK = false;

private class Node
{
Key key;
Value val;
Node left, right;
boolean color; // color of parent link

}

private boolean isRed(Node x)

{
if (x == null) return false;
return x.color == RED;

null links are black

Elementary red-black BST operations

h
h.left.color d .
S0 @l hrsmr
(Q
OERO), O,

23

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after)
X
h
greater
than S
less between
than E EandS

private Node rotateLeft(Node h)
{

assert isRed(h.right);

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = h.color;

h.color = RED;

return x;

Invariants. Maintains symmetric order and perfect black balance.

25

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before) . .
private Node rotateRight (Node h)
N {
assert isRed(h.left) ;
Node x = h.left;
h h.left = x.right;
greater x.right = h;
than S x.color = h.color;
h.color = RED;
less between SO €36
than E Eand S }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors (Node h)
{
assert !isRed(h) ;
assert isRed(h.left);
asset isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

between greater }
Eand S than S

less between
than A Aand E

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (tfemporarily) lean right.

rotate S right

(after) . .
private Node rotateRight (Node h)

{
assert isRed(h.left);
Node x = h.left;

X h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater return x;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors (Node h)
{
assert !isRed(h);
assert isRed(h.left);
asset isRed(h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

between greater }
Eand S than S

less between
than A Aand E

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black BST operations.

insert C

(E) (E)
OO, (A)
add nﬁ Q

node here

right link red
so rotate le

ft
Po
(A O,
Q&
(E)
OENO,
OENG,

Insertion in a LLRB tree
Case 1. Insert into a 2-node at the bottom.
* Do standard BST insert; color new link red.
 If new red link is a right link, rotate left.
insert C
(E) (EX
ONO, (A)
add ngv' 0
node here
right link;{efd
so rotate left
| B
(AY [S)
(@ ()
N5 ©
(Ao (RS)
(AJ (R)

32

Insertion ina LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root
o

®

. search ends
at this null link

> root
@ red link to

e O new node
containing a
converts 2-node

to 3-node

Insertion ina LLRB tree

right root

< search ends
““at this null link

e attached new node
<~ ith red link

root
Ve

e - rotated left

to make a
legal 3-node

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

@ search ends
at this

Gf N lllink

attached new
.~ node with

e G red link e

@ colors flipped

«— to black

smaller

8°

between

/
search ends

at this null link (c)
e attached new
G node with
attached new
™~ node with G
red link Q
(b) rotated () rotated left
" right
6 G G rotated
Ve
colors flipped))
« to black (b) colors flipped

O

)
()
D\

e search ends
at this null link

3

31

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
* Do standard BST insert; color new link red.
» Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

» Rotate to make lean left (if needed).

inserting H two lefts in a row

so rotate right
QI
(A" (R

add new

node here /
right link red

so rotate left
both children red

so flip colors

LLRB tree insertion demo

34

36

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

Do standard BST insert; color new link red.

» Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

» Rotate to make lean left (if needed).

* Repeat case 1 or case 2 up the tree (if needed).

inserting P both children red
@ so flip colors
(AS (H] » G m v both children
B ;}" § e red so
dd new i colors
node here flip colors
‘ two lefts in a row
right link red so rotate right \

so rotate left
N

both children red
so flip colors

LLRB tree insertion trace

Standard indexing client.

insert S @
S
A E
R -

(®
C (C]
(AY

[S)
@ ER
G S
(H)

red-black BST corresponding 2-3 tree

35

37

LLRB tree insertion trace

Standard indexing client (continued).

®)
X g@
(®)
" G
(HY
()
p (] (R)
OO

red-black BST corresponding 2-3 tree

Insertion in a LLRB tree: visualization

N =255
max = 8
avg = 7.0
opt=7.0

AT eNaTeNadeNadel

255 insertions in ascending order

38

40

Insertion in a LLRB tree: Java implementation

Same code for both cases.
* Right child red, left child black: rotate left.
* Left child, left-left grandchild red: rotate right.

* Both children red: flip colors. ng\iﬂght

private Node put(Node h, Key key, Value val)

{

58

h
left n
= rotate
fip
gzé\g colors

if (h == null) return new Node (key, val, RED) ;

int cmp = key.compareTo (h.key) ;

if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;

if (isRed(h.right)
if (isRed(h.left)
if (isRed(h.left)

return h;

&& '!'isRed(h.left)) h = rotateLeft(h);
&& isRed(h.left.left)) h = rotateRight(h);
&& isRed(h.right)) flipColors(h) ;

only a few extra lines of code
to provide near-perfect balance

Insertion in a LLRB tree: visualization

N =255
max = 8
avg = 7.0

opt=7.0

(00 00 O 00 0

insert at bottom
(and color red)

lean left
balance 4-node
split 4-node

39

255 insertions in descending order

41

Insertion in a LLRB tree: visualization

Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.

N =255 Pf.
:\‘/Zx==71§) * Every path from root to null link has same number of black links.
opt=7.0 * Never two red links in-a-row.

| lln

An VLU AN AUl 4

i : : l l

AR i o

255 random insertions

ST implementations: summary

guarantee average case
. . ordered
implementation

operations o Alto.
iteration? on keys
delete se inse delete e GUI.
sequential search * Ethernet.
N N N N/2 N N/2 1l
(linked list) / / ne equats0 * Smalltalk.
i * InterPress. Y 'E*\
binatyisearch Ig N N N Ig N N/2 N/2 yes compareTo () L. o
(ordered array) * Laser printing.
* Bitmapped display.
BST N N N 1.391g N 1.391IgN ? yes compareTo () A |
* WYSIWYG text editor. Xeoxe
L]
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
A DICHROMATIC FRAMEWORK FOR BALANCED TREES
red-black BST ~ 2IgN 2IgN 2IgN 1.00IlgN* 1.00IlgN" 1.00lgN* ves compareTo () Yoo ol o Resarh Cont gt i Compuer S
Palo Alto, California, and ' and Brown University
Carnegie-Mellon University Providence, R. 1.

42

Property. Height of tree is ~ 1.00 g N in typical applications.

War story: why red-black?
XEROX.

ot

Xerox PARC innovations. [1970s]

43

« .
exact value of coefficient unknown but extremely close to 1 e way down towands 2 ot A we will e, (his s 2 number of
ABSTRACT significant advantages over the older methods. We shall cxamine a

number of variations on a common theme and exhibit full

Tn this paper we present a uniform framework for the implementation implementations which are notable for their brevity. One
and study of halanced tree algorithms. We show how to imbed in this ~ implementation is examined carcfully, and some propertics about its

44 45

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
* At least 2 key-link pairs at root.

X . . choose M as large as possible so
e At least M /2 key-lmk pairs in other nodes. that M links fit in a page, e.g., M = 1024
 External nodes contain client keys.

* Internal nodes contain copies of keys to guide search.

sentinel key internal 3-node

each red key is a copy
of min key in subtree >
external

3""\:‘1“ external 5-node (full) external 4-node
[*IBC |[DEF J[HI113 J[KIMNOP][QRT J[UWIXY]
client keys (black) all nodes except the root are 3-, 4- or 5-nodes

are in external nodes
Anatomy of a B-tree set (M = 6)

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

slow

data within a page.
Cost model. Number of probes.
Goal. Access data using minimum number of probes.

47

Searching in a B-tree

e Start at root.
* Find interval for search key and take corresponding link.
* Search terminates in external node.

searching for E

follow this link because
E is between * and K ~~__

Sollow this link because
— EisbetweenD and H

search for E in v

this external node

Searching in a B-tree set (M = 6)

Property. Time required for a probe is much larger than time to access

49

48

50

Insertion in a B-tree

* Search for new key.
* Insert at bottom.
* Split nodes with M key-link pairs on the way up the tree.

inserting A *THIK|Q|U

[*IBICEF J[H I J[KIMINOTP J[QRTT] [UWIX
*ABCEF
new key (A) causes *[CIHIK|Q U new key (C) causes
overflow and split overflow and split
[*IA'B | [CCETF |

root split causes
a new root to be created

Inserting a new key into a B-tree set

Building a large B tree

- full page, about to split

external nodes

(line segment of length proportional
to number of keys in that node)

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between logy-1 N and log w2 N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.

. M =1024; N = 62 billion
In practice. Number of probes is at most 4. < logweN = 4

Optimization. Always keep root page in memory.

52

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.

o C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
* Windows: HPFS.

* Mac: HFS, HFS+.

* Linux: ReiserFS, XFS, Ext3FS, JFS.

* Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

54

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

