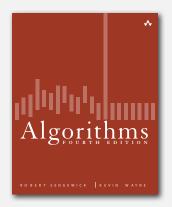
3.1 SYMBOL TABLES



- ▶ API
- > sequential search
- ▶ binary search
- ordered operations

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · October 10, 2011 8:25:03 PM

▶ API

Symbol tables

Key-value pair abstraction.

- Insert a value with specified key.
- Given a key, search for the corresponding value.

Ex. DNS lookup.

- Insert URL with specified IP address.
- Given URL, find corresponding IP address.

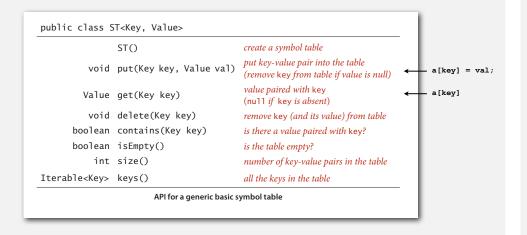
URL	IP address					
www.cs.princeton.edu	128.112.136.11					
www.princeton.edu	128.112.128.15					
www.yale.edu	130.132.143.21					
www.harvard.edu	128.103.060.55					
www.simpsons.com	209.052.165.60					
key	value					

Symbol table applications

application	purpose of search	key	value		
dictionary	find definition	word	definition		
book index	find relevant pages	term	list of page numbers		
file share	find song to download	name of song	computer ID		
financial account	process transactions	account number	transaction details		
web search	find relevant web pages	keyword	list of page names		
compiler	find properties of variables	variable name	type and value		
routing table	route Internet packets	destination	best route		
DNS	find IP address given URL	URL	IP address		
reverse DNS	find URL given IP address	IP address	URL		
genomics	find markers	DNA string	known positions		
file system	find file on disk	filename	location on disk		

Symbol table API

Associative array abstraction. Associate one value with each key.



Conventions

- Values are not null.
- Method get() returns null if key not present.
- Method put () overwrites old value with new value.

Intended consequences.

• Easy to implement contains ().

```
public boolean contains(Key key)
{ return get(key) != null; }
```

• Can implement lazy version of delete().

```
public void delete(Key key)
{  put(key, null); }
```

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

- Assume keys are Comparable, USE compareTo ().
- Assume keys are any generic type, use equals () to test equality.
- Assume keys are any generic type, use equals() to test equality;
 use hashcode() to scramble key.

built-in to Java (stay tuned)

Best practices. Use immutable types for symbol table keys.

- Immutable in Java: String, Integer, Double, java.io.File, ...
- Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals ().

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) iS false.

do x and y refer to

the same object?

Default implementation. (x == y)

Customized implementations. Integer, Double, String, File, URL, ...

User-defined implementations. Some care needed.

refer to

specify Comparable in API.

R

equivalence

relation

Implementing equals for user-defined types

Seems easy.

```
public    class Date implements Comparable<Date>
{
    private final int month;
    private final int day;
    private final int year;
    ...

public boolean equals(Date that)
{

    if (this.day != that.day ) return false;
    if (this.month != that.month) return false;
    if (this.year != that.year ) return false;
    return true;
}
```

Equals design

"Standard" recipe for user-defined types.

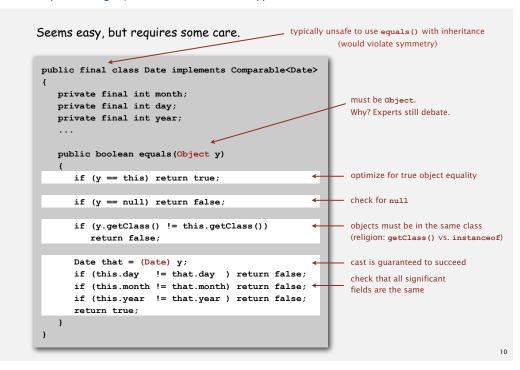
- Optimization for reference equality.
- Check against null.
- Check that two objects are of the same type and cast.
- Compare each significant field:
 - if field is a primitive type, use == apply rule recursively
 - if field is an object, use equals ()
 - if field is an array, apply to each entry alternatively, use Arrays.equals(a, b) or Arrays.deepEquals(a, b), but not a.equals(b)

Best practices.

- Compare fields mostly likely to differ first.
- No need to use calculated fields that depend on other fields.
- Make compare To () consistent with equals ().

```
x.equals(y) if and only if (x.compareTo(y) == 0)
```

Implementing equals for user-defined types



ST test client for traces

Build ST by associating value i with i^{th} string from standard input.

```
public static void main(String[] args)
{
   ST<String, Integer> st = new ST<String, Integer>();
   for (int i = 0; !StdIn.isEmpty(); i++)
   {
      String key = StdIn.readString();
      st.put(key, i);
   }
   for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
}
```

```
keys S E A R C H E X A M P L E values 0 1 2 3 4 5 6 7 8 9 10 11 12
```

output

```
A 8
C 4
E 12
H 5
L 11
M 9
P 10
R 3
S 0
X 7
```

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input and print out one that occurs with highest frequency.

```
% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
                                                  tiny example
(60 words, 20 distinct)
it 10
                                                   real example
% java FrequencyCounter 8 < tale.txt</pre>
                                                   (135,635 words, 10,769 distinct)
business 122
                                                   real example
% java FrequencyCounter 10 < leipzig1M.txt 	</pre>
                                                   (21,191,455 words, 534,580 distinct)
government 24763
```

$\label{lem:counter} \textbf{Frequency counter implementation}$

```
public class FrequencyCounter
   public static void main(String[] args)
      int minlen = Integer.parseInt(args[0]);
                                                                         create ST
      ST<String, Integer> st = new ST<String, Integer>();
      while (!StdIn.isEmpty())
         String word = StdIn.readString();
                                                                          read string and
         if (word.length() < minlen) continue;
                                                                          update frequency
         if (!st.contains(word)) st.put(word, 1);
         else
                                  st.put(word, st.get(word) + 1);
      String max = "";
      st.put(max, 0);
                                                                          print a string
                                                                          with max freq
      for (String word : st.keys())
         if (st.get(word) > st.get(max))
            max = word;
      StdOut.println(max + " " + st.get(max));
}
```

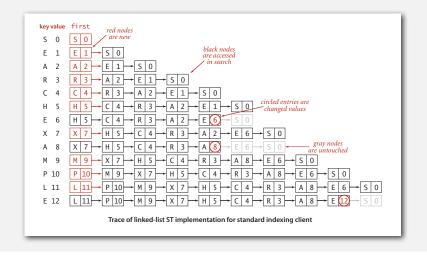
Sequential search in a linked list

13

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.



. API

> sequential search

- binary search
- ordered operations

Elementary ST implementations: summary

ST implementation	worst	case	average	case	ordered	operations
31 implementation	search	insert search hit insert		iteration?	on keys	
sequential search (unordered list)	N	N	N / 2	N	no	equals()

Challenge. Efficient implementations of both search and insert.

▶ binary search

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?

```
successful search for P 0 1 2 3 4 5 6 7 8 9
     0 9 4 A C E H L M P R S X
                                            -are a[lo..hi]
     5 9 7 A C E H L M P R S X
     5 6 5 A C E H L M P R S X
     666 ACEHLMPRSX
                                 \[ \loop exits with keys[m] = P: \[ \text{return 6} \]
unsuccessful search for Q
     lo hi m
     0 9 4 A C E H L M P R S X
     5 9 7 A C E H L M P R S X
     5 6 5 A C E H L M P R S X
     7 6 6 A C E H L M P R S X
           loop exits with lo > hi: return 7
             Trace of binary search for rank in an ordered array
```

Binary search: Java implementation

```
public Value get(Key key)
{
   if (isEmpty()) return null;
   int i = rank(key);
   if (i < N && keys[i].compareTo(key) == 0) return vals[i];</pre>
   else return null;
}
                                                number of keys < key
private int rank (Key key)
   int lo = 0, hi = N-1;
   while (lo <= hi)
       int mid = lo + (hi - lo) / 2;
       int cmp = key.compareTo(keys[mid]);
                (cmp < 0) hi = mid - 1;
       else if (cmp > 0) lo = mid + 1;
       else if (cmp == 0) return mid;
  return lo;
```

Binary search: mathematical analysis

Proposition. Binary search uses $\sim \lg N$ compares to search any array of size N.

Pf. T(N) = number of compares to binary search in a sorted array of size N.

$$\leq T(\lfloor N/2 \rfloor) + 1$$

| left or right half

Recall lecture 2.

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

			keys[]													va	l s []]				
key	value	0	1	2	3	4	5	6	7	8	9	N	0	1	2	3	4	5	6	7	8	9
S	0	S										1	0									
Ε	1	Ε	S				ntrie	c in	rad.			2	1	0					itries wed t			
Α	2	Α	Ε	S			vere i					3	2	1	0		/	mo	iveu i	o ine	rigni	
R	3	Α	Ε	R	S							4	2	1	3	0						
C	4	Α	C	Ε	R	S			er	tries	in gra	_v 5	2	4	1	3	0					
Н	5	Α	\subset	Ε	Н	R	S				ot mov		2	4	1	5	3	0			ntrie ed va	s are
Ε	6	Α	\subset	Ε	Н	R	S					6	2	4	6	5	3	0	CI	unge	u vu	шез
Χ	7	Α	\subset	Ε	Н	R	S	Χ				7	2	4	6	5	3	0	7			
Α	8	Α	\subset	Ε	Н	R	S	Х				7	8	4	6	5	3	0	7			
M	9	Α	\subset	Ε	Н	М	R	S	Χ			8	8	4	6	5	9	3	0	7		
Р	10	Α	\subset	Ε	Н	M	Р	R	S	Χ		9	8	4	6	5	9	10	3	0	7	
L	11	Α	\subset	Ε	Н	L	М	Р	R	S	Χ	10	8	4	6	5	11	9	10	3	0	7
Ε	12	Α	\subset	Е	Н	L	M	Р	R	S	Х	10	8	4 (12)	5	11	9	10	3	0	7
		Α	C	Ε	Н	L	М	Р	R	S	Χ		8	4	12	5	11	9	10	3	0	7

Elementary ST implementations: summary

ST implementation	worst	case	average	e case	ordered	operations
31 implementation	search	insert	search hit	insert	iteration?	on keys
sequential search (unordered list)	N	N	N N/2 N		no	equals()
binary search (ordered array)	log N	N	log N N / 2		yes	compareTo()

Challenge. Efficient implementations of both search and insert.

) API

sequential search

b hinary search

ordered operations

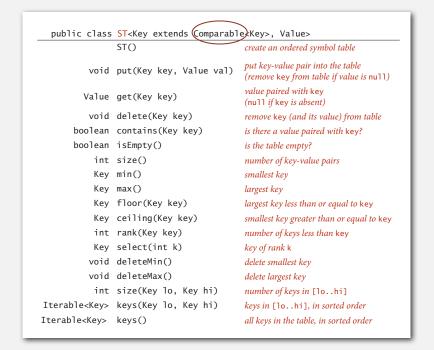
23

,

Ordered symbol table API

```
values
                    min() \longrightarrow 09:00:00 Chicago
                             09:00:03 Phoenix
                             09:00:13→ Houston
            get(09:00:13) 09:00:59 Chicago
                             09:01:10 Houston
         floor(09:05:00) \longrightarrow 09:03:13 Chicago
                             09:10:11 Seattle
               select(7) \rightarrow 09:10:25 Seattle
                             09:14:25 Phoenix
                            09:19:32 Chicago
                             09:19:46 Chicago
keys(09:15:00, 09:25:00) \rightarrow 09:21:05 Chicago
                             09:22:43 Seattle
                            09:22:54 Seattle
                             09:25:52 Chicago
       ceiling(09:30:00) \rightarrow 09:35:21 Chicago
                             09:36:14 Seattle
                    max() \longrightarrow 09:37:44 Phoenix
size(09:15:00, 09:25:00) is 5
     rank(09:10:25) is 7
     Examples of ordered symbol-table operations
```

Ordered symbol table API

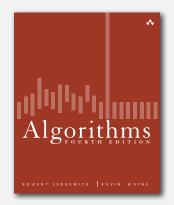


Binary search: ordered symbol table operations summary

	sequential search	binary search
search	N	lg N
insert	1	N
min / max	N	1
floor / ceiling	N	lg N
rank	N	lg N
select	N	1
ordered iteration	N log N	N

order of growth of the running time for ordered symbol table operations

3.2 BINARY SEARCH TREES



- **▶** BSTs
- ordered operations
- deletion

▶ BSTs

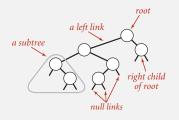
- ordered operations
- deletion

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

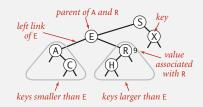
- Empty.
- Two disjoint binary trees (left and right).



Anatomy of a binary tree

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.



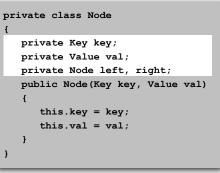
Anatomy of a binary search tree

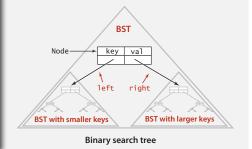
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.





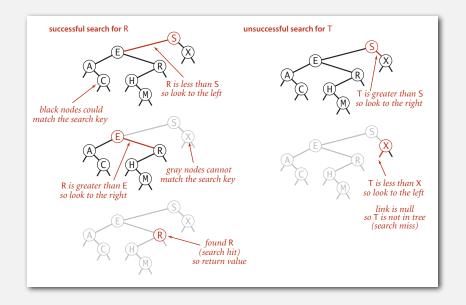
Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

BST search and insert demo

BST search

Get. Return value corresponding to given key, or null if no such key.



BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```

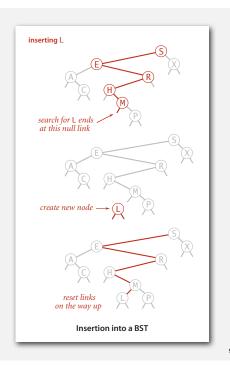
Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree ⇒ reset value.
- Key not in tree \Rightarrow add new node.



BST insert: Java implementation

Put. Associate value with key.

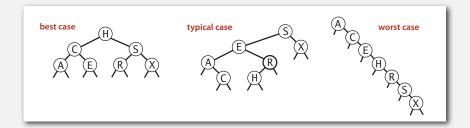
```
public void put(Key key, Value val)
{ root = put(root, key, val); }

private Node put(Node x, Key key, Value val)
{
  if (x == null) return new Node(key, val);
  int cmp = key.compareTo(x.key);
  if (cmp < 0)
    x.left = put(x.left, key, val);
  else if (cmp > 0)
    x.right = put(x.right, key, val);
  else if (cmp == 0)
    x.val = val;
  return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.

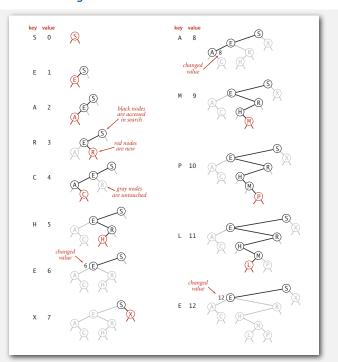
Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.



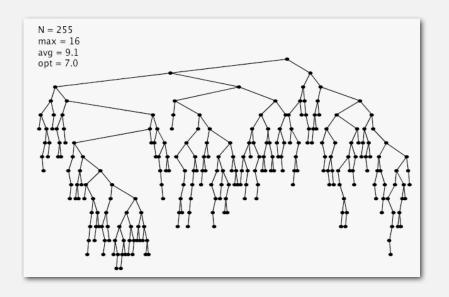
Remark. Tree shape depends on order of insertion.

BST trace: standard indexing client



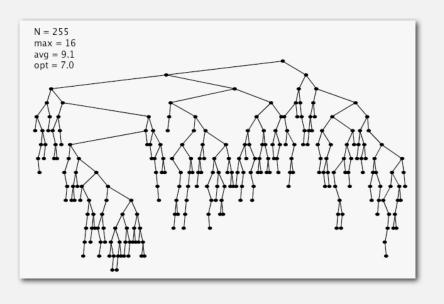
BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

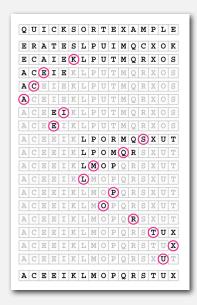


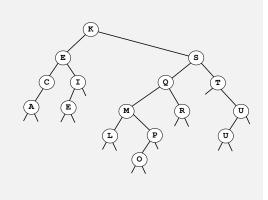
BST insertion: random order visualization

Ex. Insert keys in random order.



Correspondence between BSTs and quicksort partitioning





Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

But... Worst-case height is N. (exponentially small chance when keys are inserted in random order)

ST implementations: summary

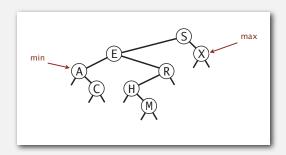
implementation	guar	antee	averag	e case	ordered	operations
	search	insert	search hit	insert	ops?	on keys
sequential search (unordered list)	N	N	N/2	N	no	equals()
binary search (ordered array)	lg N	N	lg N	N/2	yes	compareTo()
BST	N	N	1.39 lg N	1.39 lg N	?	compareTo()

15

► BSTs ► ordered operations ► deletion

Minimum and maximum

Minimum. Smallest key in table. Maximum. Largest key in table.

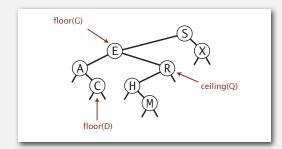


Q. How to find the min / max?

19

Floor and ceiling

Floor. Largest key \leq to a given key. Ceiling. Smallest key \geq to a given key.



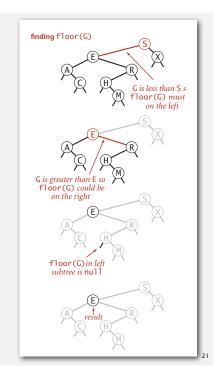
Q. How to find the floor /ceiling?

Computing the floor

Case 1. [k equals the key at root] The floor of k is k.

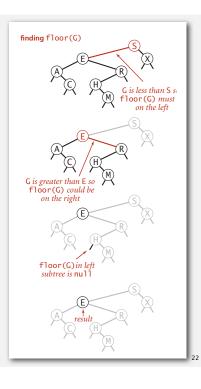
Case 2. [k is less than the key at root]The floor of k is in the left subtree.

Case 3. [k is greater than the key at root] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the root.



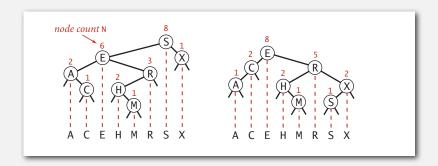
2

Computing the floor



Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node. To implement size(), return the count at the root.



Remark. This facilitates efficient implementation of rank() and select().

2.2

BST implementation: subtree counts

```
private class Node
{
   private Key key;
   private Value val;
   private Node left;
   private Node right;
   private int N;
}

number of nodes
in subtree
```

```
public int size()
{  return size(root); }

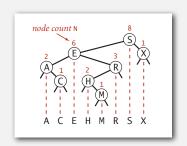
private int size(Node x)
{
  if (x == null) return 0;
  return x.N;
}
```

```
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = put(x.left, key, val);
   else if (cmp > 0) x.right = put(x.right, key, val);
   else if (cmp == 0) x.val = val;
   x.N = 1 + size(x.left) + size(x.right);
   return x;
}
```

Rank

Rank. How many keys < k?

Easy recursive algorithm (4 cases!)



```
public int rank(Key key)
{    return rank(key, root); }

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```

Selection

Select. Key of given rank.

```
public Key select(int k)
{
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}

private Node select(Node x, int k)
{
    if (x == null) return null;
    int t = size(x.left);
    if (t > k)
        return select(x.left, k);
    else if (t < k)
        return select(x.right, k-t-1);
    else if (t == k)
        return x;
}</pre>
```

```
finding select(3)
the key of rank 3

count N

8

8 keys in left subtree
M so search for key of rank 3 on the left

2 keys in left subtree so search for key of rank 3 -2-1 = 0 on the right

O keys in left subtree
M so search for key of rank 0 on the left

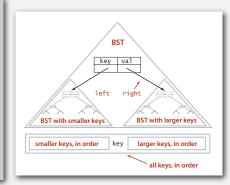
O keys in left subtree
and searching for key of rank 0 so return H
```

Inorder traversal

- · Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

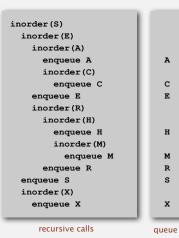
private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```



Property. Inorder traversal of a BST yields keys in ascending order.

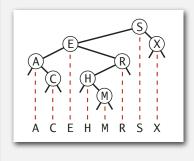
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.



function call stack

s



BST: ordered symbol table operations summary

	sequential search	binary search	BST	1
search	N	lg N	h	
insert	1	N	h	h = height of BST
min / max	N	1	h 👉	(proportional to log N if keys inserted in random order)
floor / ceiling	N	lg N	h 🖊	
rank	N	lg N	h	
select	N	1	h	
ordered iteration	N log N	N	N	

worst-case running time of ordered symbol table operations

→ BSTs→ ordered operations

▶ deletion

ST implementations: summary

implementation		guarantee	2	a	verage case	ordered	operations	
implementation	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	???	yes	compareTo()

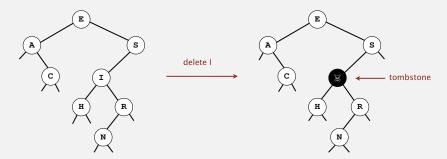
Next. Deletion in BSTs.

31

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide searches (but don't consider it equal to search key).



Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

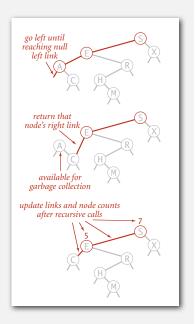
Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```
public void deleteMin()
{ root = deleteMin(root); }

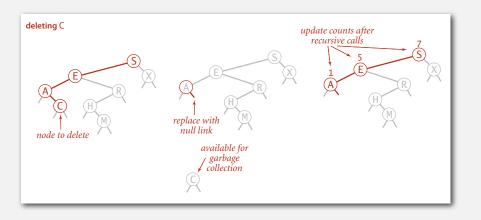
private Node deleteMin(Node x)
{
   if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
   x.N = 1 + size(x.left) + size(x.right);
   return x;
}
```



Hibbard deletion

To delete a node with key k: search for node t containing key k.

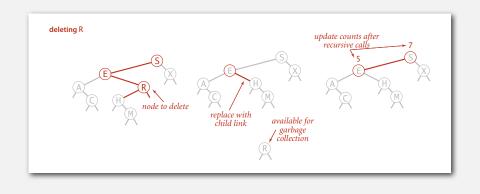
Case 0. [O children] Delete t by setting parent link to null.



Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

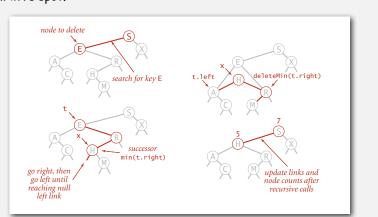


Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor *x* of *t*.
- Delete the minimum in t's right subtree.
- Put *x* in *t*'s spot.



x has no left child

still a BST

but don't garbage collect x

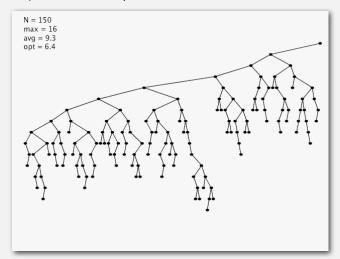
Hibbard deletion: Java implementation

```
public void delete (Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
            (cmp < 0) x.left = delete(x.left, key);</pre>
                                                                 search for key
   else if (cmp > 0) x.right = delete(x.right, key);
   else {
                                                                 no right child
      if (x.right == null) return x.left;
      Node t = x;
      x = min(t.right);
                                                                  replace with
      x.right = deleteMin(t.right);
                                                                  successor
      x.left = t.left;
                                                                 update subtree
   x.N = size(x.left) + size(x.right) + 1; \leftarrow
   return x:
```

2

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.



Surprising consequence. Trees not random (!) \Rightarrow sqrt (N) per op. Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

implementation		guarantee		a	verage case	ordered	operations	
mpiementation	search	insert	delete	search hit	arch hit insert dele	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	√N	yes	compareTo()

other operations also become $\sqrt{N}\,$ if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.