COS 226, FALL 2011

ALGORITHMS AND DATA STRUCTURES

KEVIN WAYNE

COS 226 course overview

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving, with applications.
- Algorithm: method for solving a problem.
- Data structure: method to store information.

topic	data structures and algorithms
data types	stack, queue, bag, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	BST, red-black BST, hash table
graphs	BFS, DFS, Prim, Kruskal, Dijkstra
strings	KMP, regular expressions, TST, Huffman, LZW
advanced	B-tree, suffix array, maxflow, simplex

Course Overview

outlinewhy study algorithms?

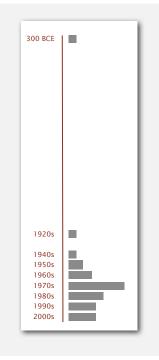
- usual suspects
- Coursework
- resources

Why study algorithms?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ... Biology. Human genome project, protein folding, ... Computers. Circuit layout, file system, compilers, ... Computer graphics. Movies, video games, virtual reality, ... Security. Cell phones, e-commerce, voting machines, ... Multimedia. MP3, JPG, DivX, HDTV, face recognition, ... Social networks. Recommendations, news feeds, advertisements, ... Physics. N-body simulation, particle collision simulation, ...

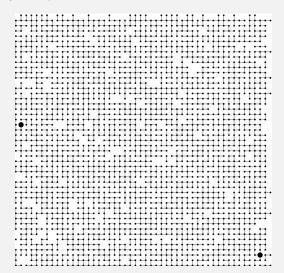
Why study algorithms?


Why study algorithms?

For intellectual stimulation.

computing. " — F. Sullivan

Old roots, new opportunities.


- Study of algorithms dates at least to Euclid.
- Some important algorithms were discovered by undergraduates in a course like this!

Why study algorithms?

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?

To become a proficient programmer.

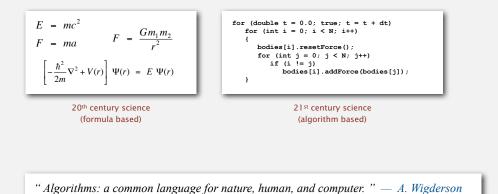
"I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships." — Linus Torvalds (creator of Linux)

6

"Algorithms + Data Structures = Programs." — Niklaus Wirth

" An algorithm must be seen to be believed." — D. E. Knuth

"For me, great algorithms are the poetry of computation. Just like


once unlocked, they cast a brilliant new light on some aspect of

verse, they can be terse, allusive, dense, and even mysterious. But

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

Why study algorithms?

- Their impact is broad and far-reaching.
- Old roots, new opportunities.
- To solve problems that could not otherwise be addressed.
- For intellectual stimulation.
- To become a proficient programmer.
- They may unlock the secrets of life and of the universe.
- For fun and profit.

The usual suspects

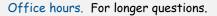
Lectures. Introduce new material.

Precepts. Discussion, problem-solving, background for programming assignment.

What	When	Where	Who	Office Hours
L01	TTh 11-12:20	CS 104	Kevin Wayne	see web
P01	F 11-11:50	Friend 112	Maia Ginsburg †	see web
P01A	F 11-11:50	Friend 108	Aman Dhesi	see web
P02	F 12:30-1:20	Friend 112	Joey Dodds	see web
P02A	F 12:30-1:20	Friend 108	Steven Liu	see web
P03	F 1:30-2:20	Friend 112	Maia Ginsburg †	see web
P03A	F 1:30-2:20	Friend 108	Sasha Koruga	see web

† lead preceptor

Where to get help?


Piazza, Online discussion forum.

- Short questions.
- Clarifications on lectures, readings, and assignments.

Email. For personal (or solution-revealing) questions.

http://www.piazza.com/class#cos226fall2011

GMail YAHOO! Mail

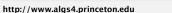
Computing laboratory. Undergrad TAs in Friend 016. See web for schedule.

4. Graphs

5. Strings

13

Resources (web)


Course content.

- Course info.
- Programming assignments.
- Exercises.
- Lecture slides
- Exam archive.
- Submit assignments.

Booksites.

- Brief summary of content.
- Download code from lecture.

ion of a priority queue.

earching describes several classic symbol table ions, including binary search trees, red-black trees, and ha

Coursework and grading

Programming assignments. 45%

Due at 11pm via electronic submission.

Written exercises, 15% Due at 11am in lecture.

Exams. 15% + 25%

- Closed-book with cheatsheet.
- Midterm (in class on Tuesday, October 25).
- Final (scheduled by Registrar).

Staff discretion. To adjust borderline cases.

- Report errata.
- Contribute to Piazza discussions.
- Attend and participate in precept/lecture.

Resources (textbook)

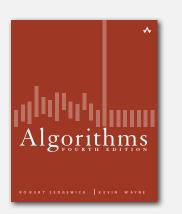
Required readings: Algorithms 4th edition by R. Sedgewick and K. Wayne, Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

Available in hardcover and Kindle.

- Online: Amazon (\$60 to buy), Chegg (\$40 to rent), ...
- Brick-and-mortar: Labyrinth Books (122 Nassau St).
- On reserve: Engineering library.

What's ahead?

Lecture 1. Union find. ← today Precept 1. Meets tomorrow. Lecture 2. Analysis of algorithms.


Exercise 1. Due via hardcopy in lecture at 11am on Tuesday. Assignment 1. Due via electronic submission at 11pm on Wednesday.

Right course? See me. Placed out of COS 126? Review Sections 1.1-1.2 of Algorithms, 4th edition (includes command-line interface and our I/O libraries).

Not registered? Go to any precept tomorrow.

see Colleen Kenny-McGinley in CS 210 if the only precept you can attend is closed

19

1.5 UNION FIND

• dynamic connectivity

- quick find
- ▶ quick union
- improvements
- ▶ applications

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · September 14, 2011 3:57:30 PM

Subtext of today's lecture (and this course)

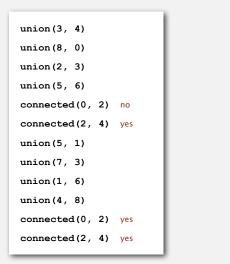
Steps to developing a usable algorithm.

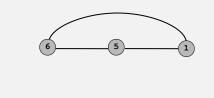
- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

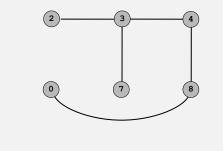
The scientific method.

Mathematical analysis.

• dynamic connectivity


auick find


- quick unior
- improvements
- applications


Given a set of objects

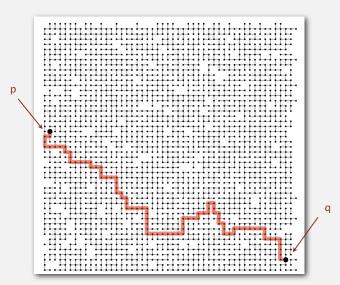
- Union: connect two objects.
- Connected: is there a path connecting the two objects?

more difficult problem: find the path

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Variable names in Fortran.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Metallic sites in a composite system.

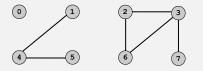

When programming, convenient to name sites 0 to N-1.

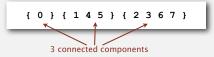
- Use integers as array index.
- · Suppress details not relevant to union-find.

can use symbol table to translate from site names to integers: stay tuned (Chapter 3)

Connectivity example

Q. Is there a path from p to q?


A. Yes.

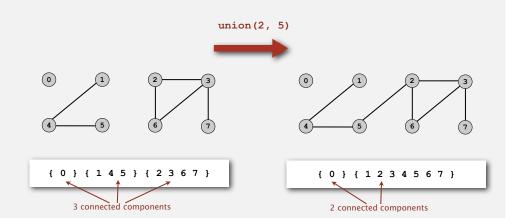

Modeling the connections

We assume "is connected to" is an equivalence relation:

- Reflexive: p is connected to p.
- Symmetric: if p is connected to q, then q is connected to p.
- Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

Implementing the operations


Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

Union-find data type (API)

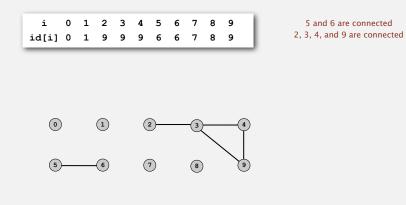
Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations *M* can be huge.
- Find queries and union commands may be intermixed.

public class	UF	
	UF(int N)	initialize union-find data structure with N objects (0 to N-1)
void	union(int p, int q)	add connection between p and q
boolean	connected(int p, int q)	are <i>p</i> and <i>q</i> in the same component?
int	find(int p)	component identifier for p (0 to N-1)
int	count()	number of components

Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
 - read in pair of integers from standard input
 - write out pair if they are not already connected


<pre>public static void main(String[] args)</pre>	% more tiny.txt
{	10
<pre>int N = StdIn.readInt();</pre>	4 3
UF uf = new UF(N);	38
<pre>while (!StdIn.isEmpty())</pre>	6 5
{	94
<pre>int p = StdIn.readInt();</pre>	2 1
<pre>int q = StdIn.readInt();</pre>	8 9
if (uf.connected(p, q)) continue;	5 0
uf.union(p, q);	7 2
<pre>StdOut.println(p + " " + q);</pre>	6 1
}	1 0
}	6 7

•	quick find
	quick union

```
Quick-find [eager approach]
```

Data structure.

- Integer array id[] of size N.
- Interpretation: p and g are connected iff they have the same id.

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: p and q are connected iff they have the same id.

i	0	1	2	3	4	5	6	7	8	9	
id[i]	0	1	9	9	9	6	6	7	8	9	

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 63 and 6 are not connected

12

Quick-find [eager approach]

Data structure.

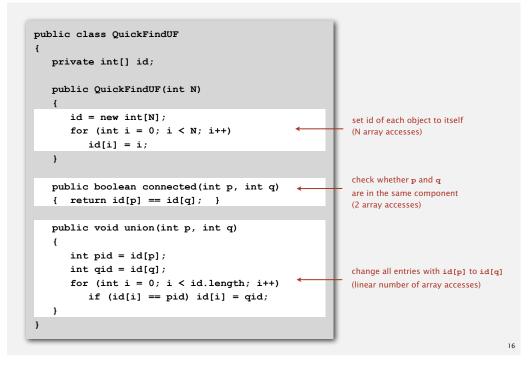
- Integer array id[] of size N.
- Interpretation: p and q are connected iff they have the same id.

i	0	1	2	3	4	5	6	7	8	9	
id[i]	0	1	9	9	9	6	6	7	8	9	

Find. Check if p and q have the same id.

id[3] = 9; id[6] = 63 and 6 are not connected

Union. To merge components containing p and q, change all entries whose ia[] equals ia[p] to ia[q].

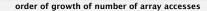


after union of 3 and 6 $\,$

Quick-find example

	id[]
рq	0 1 2 3 4 5 6 7 8 9
4 3	0 1 2 3 4 5 6 7 8 9
	0 1 2 3 3 5 6 7 8 9
38	0 1 2 3 3 5 6 7 8 9
	0 1 2 8 8 5 6 7 8 9
6 5	0 1 2 8 8 5 6 7 8 9
	0 1 2 8 8 5 5 7 8 9
94	0 1 2 8 8 5 5 7 8 9
	0 1 2 8 8 5 5 7 8 8
2 1	0 1 2 8 8 5 5 7 8 8
	0 1 1 8 8 5 5 7 8 8
8 9	0 1 1 8 8 5 5 7 8 8
5 0	0 1 1 8 8 5 5 7 8 8
	0 1 1 8 8 0 0 7 8 8
7 2	0 1 1 8 8 0 0 7 8 8
	0 1 1 8 8 0 0 1 8 8
6 1	0 1 <u>1</u> <u>8</u> <u>8</u> 0 0 <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>1</u> <u>8</u> <u>8</u> 0 0 <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>1</u> <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>1</u> <u>8</u>
	1 1 1 8 8 1 1 1 8 8 union() changes entries equal
1 0	1 1 1 8 8 1 1 1 8 8 <i>to</i> id[p] <i>to</i> id[q] <i>(in red)</i>
6 7	1 1 1 8 8 1 1 1 8 8
	id[p] and id[q] match, so no change

Quick-find: Java implementation


a truism (roughly)

since 1950!

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

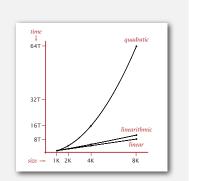
algorithm	init	union	connected
quick-find	Ν	Ν	1

Quick-find defect.

- Union too expensive.
- Trees are flat, but too expensive to keep them flat.
- Ex. Takes N² array accesses to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).


- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!

dynamic connectivity

17

19

quick find

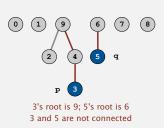
quick union

mprovemer

applications

Data structure.

- Integer array id[] of size N.
- Interpretation: ia[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].


keep going until it doesn't change

Data structure.

- Integer array ia[] of size N.
- Interpretation: id[i] is parent of i.
- Root of i is ia[id[id[...id[i]...]]].

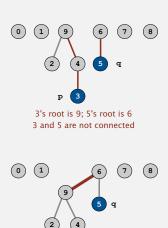
i	0	1	2	3	4	5	6	7	8	9	
id[i]	0	1	9	4	9	6	6	7	8	9	

Find. Check if p and q have the same root.

keep going until it doesn't change

Quick-union [lazy approach]

Data structure.


- Integer array id[] of size N.
- Interpretation: id[i] is parent of i.
- Root of i is ia[ia[ia[...ia[i]...]]].

i	0	1	2	3	4	5	6	7	8	9	
id[i]	0	1	9	4	9	6	6	7	8	9	

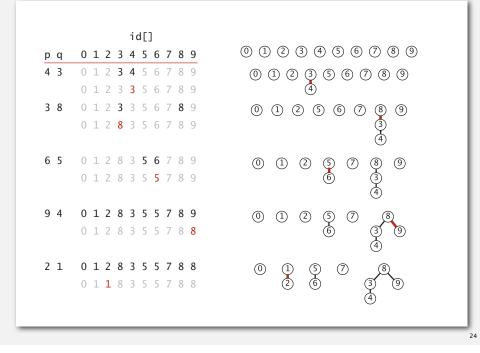
Find. Check if p and q have the same root.

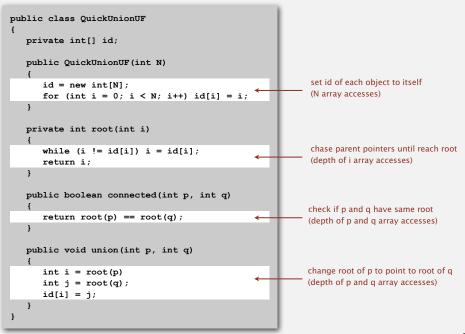
Union. To merge components containing p and q, set the id of p's root to the id of q's root.

keep going until it doesn't change

Quick-union demo

20


22


21

Quick-union example

Quick-union example

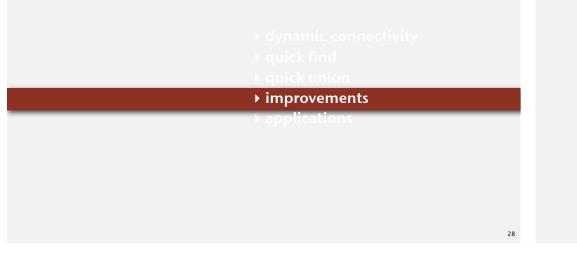
Quick-union: Java implementation

	id[]
рq	0 1 2 3 4 5 6 7 8 9
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
89	0 1 1 8 3 5 5 7 8 8
5 0	0118355788 (0) (1) (7) (8)
	0 1 1 8 3 5 5 7 8 8 (0) (1) (7) (8) 0 1 1 8 3 0 5 7 8 8 (5) (2) (3) (9) 6 (4)
72	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 1	
	1 1 1 8 3 0 5 1 8 8 0 2 7 3 9 5 4
1 0	11 18305188 ⁶
67	1 1 1 8 3 0 5 1 8 8

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

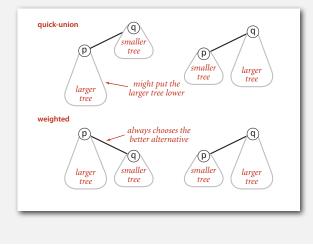
algorithm	init	union	connected	1
quick-find	N	Ν	1	
quick-union	N	N †	Ν	← worst case

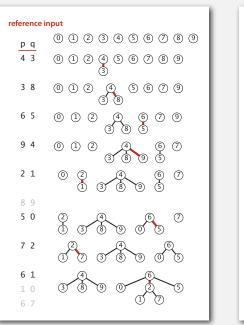

† includes cost of finding roots

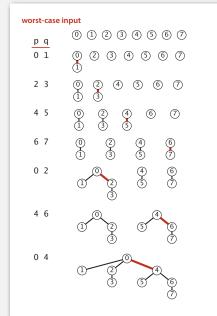
Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

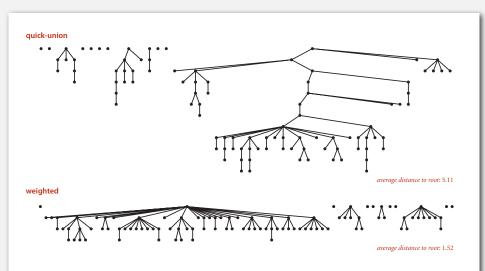
Quick-union defect.


- Trees can get tall.
- Find too expensive (could be N array accesses).


Improvement 1: weighting


Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking small tree below large one.


Weighted quick-union examples

30

Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

return root(p) == root(q);

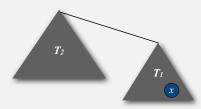
Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

```
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```

Weighted quick-union analysis

Running time.

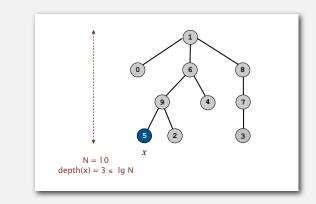

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. When does depth of x increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?



Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

33

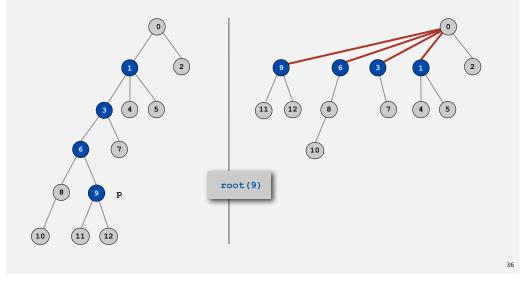
Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	init	union	connected
quick-find	Ν	N	1
quick-union	Ν	N †	Ν
weighted QU	Ν	lg N †	lg N


† includes cost of finding roots

Q. Stop at guaranteed acceptable performance?

A. No, easy to improve further.

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to point to that root.

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its grandparent (thereby halving path length).

In practice. No reason not to! Keeps tree almost completely flat.

37

Weighted guick-union with path compression example

<u>pq</u> 43	0123456789
43	0 1 2 4 5 6 7 8 9 3
38	0 1 2 4 5 6 7 9 3 8
65	0 1 2 4 6 7 9 3 8 5
94	0 1 2 4 6 7 3 8 9 5
2 1	0 2 4 6 7 1 3 8 9 5
8 9	
5 0	
72	
6 1	
1 0	^O
6 7	(4)
	3 8 9 7 0 1 2 5

1 linked to 6 because of

path compression

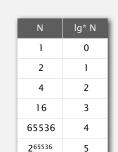
7 linked to 6 because of path compression

38

Weighted quick-union with path compression: amortized analysis

Proposition. Starting from an empty data structure, any sequence of M union-find operations on N objects makes at most proportional to $N + M \lg^* N$ array accesses.

- Proof is very difficult.
- But the algorithm is still simple! ______ see COS 423
- Bob Tarjan (Turing Award '86)


• Analysis can be improved to $N + M \alpha(M, N)$.

Linear-time algorithm for M union-find ops on N objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

because lg* N is a constant in this universe

Amazing fact. No linear-time algorithm exists.

lg* function

in "cell-probe" model of computation

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time	
quick-find	M N	
quick-union	M N	
weighted QU	N + M log N	
QU + path compression	N + M log N	
weighted QU + path compression	N + M lg* N	

M union-find operations on a set of N objects

Ex. [10^9 unions and finds with 10^9 objects]

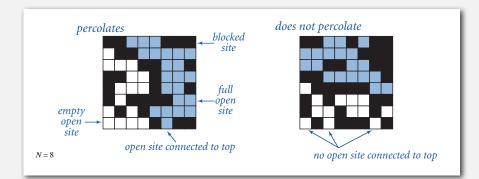
- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Dynamic connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's bwlabel() function in image processing.

Percolation

A model for many physical systems:

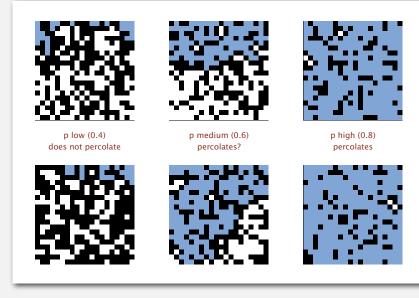

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1 p).

▶ applications

41

43

• System percolates iff top and bottom are connected by open sites.

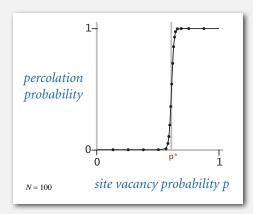

A model for many physical systems:

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1 p).
- System percolates iff top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

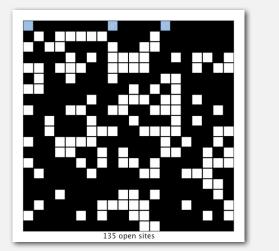
Likelihood of percolation

Depends on site vacancy probability p.


44

46

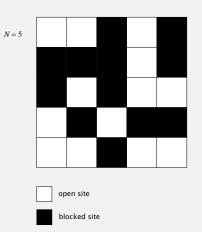
Percolation phase transition


When N is large, theory guarantees a sharp threshold p^* .

- *p* > *p**: almost certainly percolates.
- *p* < *p**: almost certainly does not percolate.
- Q. What is the value of p^* ?

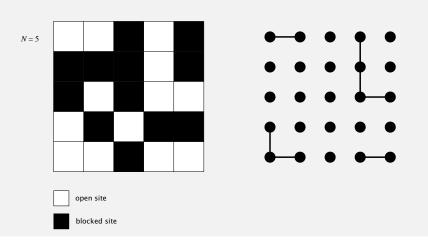
Monte Carlo simulation

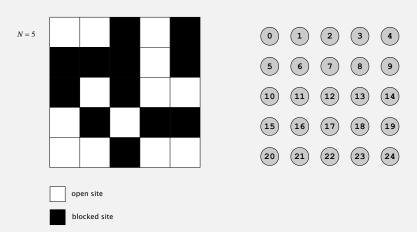
- Initialize *N*-by-*N* whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^* .



N = 20

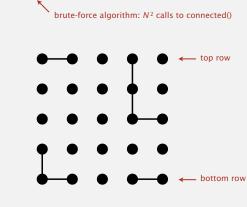
Q. How to check whether an *N*-by-*N* system percolates?


Dynamic connectivity solution to estimate percolation threshold


- Q. How to check whether an N-by-N system percolates?
- Create an object for each site and name them 0 to $\mathit{N^2-1}.$

Dynamic connectivity solution to estimate percolation threshold

- Q. How to check whether an *N*-by-*N* system percolates?
- Create an object for each site and name them 0 to $N^2 1$.
- Sites are in same component if connected by open sites.



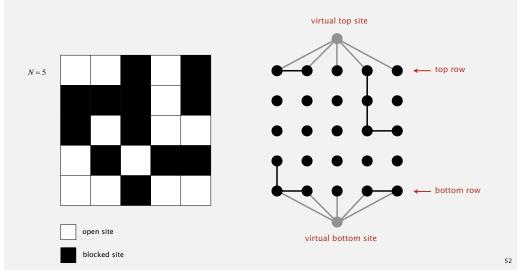
Dynamic connectivity solution to estimate percolation threshold

- Q. How to check whether an *N*-by-*N* system percolates?
- Create an object for each site and name them 0 to $N^2 1$.
- Sites are in same component if connected by open sites.
- Percolates iff any site on bottom row is connected to site on top row.

 N = 5

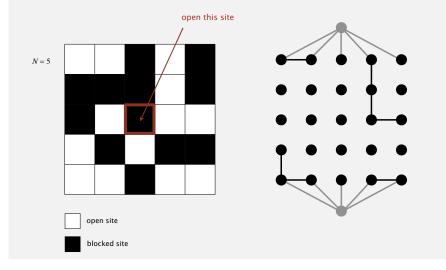
 Image: Second s

blocked site


48

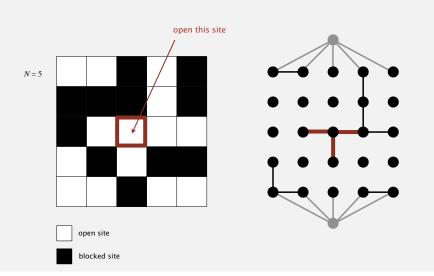
50

Clever trick. Introduce two virtual sites (and connections to top and bottom).


efficient algorithm: only 1 call to connected()

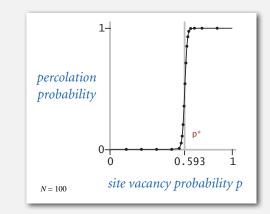
• Percolates iff virtual top site is connected to virtual bottom site.

Dynamic connectivity solution to estimate percolation threshold


 ${\sf Q}. \$ How to model as dynamic connectivity problem when opening a new site?

Dynamic connectivity solution to estimate percolation threshold

- Q. How to model as dynamic connectivity problem when opening a new site?
- A. Connect newly opened site to all of its adjacent open sites.


up to 4 calls to union()

Percolation threshold

- Q. What is percolation threshold p^* ?
- A. About 0.592746 for large square lattices.

constant know only via simulation

Fast algorithm enables accurate answer to scientific question.

54

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.

56

• Iterate until satisfied.

The scientific method.

Mathematical analysis.