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Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop i scan because a[i] >= a[lo]
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Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].
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Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.
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i

stop i scan because a[i] >= a[lo]
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Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop j scan because a[j] <= a[lo]
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Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

When pointers cross.
* Exchange a[10] with a[j].

K C A E E L P U T M Q
t r 1
lo j [

pointers cross: exchange a[lo] with a[j]

22



Quicksort partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].
* Scan j from right to left so long as a[j1 > a[lo].

e Exchange a[i] with a[31.

When pointers cross.
* Exchange a[10] with a[j].

E C A E K L P U T M S
) ) )
lo J

partitioned!
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Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].
e Scan i from left to right.

- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

It i
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Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
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Dijkstra 3-way partitioning
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Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

43



Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

v v
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exchange a[i] with a[j]
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

v v
P W P P V P D P
0 0 1 0
lo [ j hi

exchange a[i] with a[j]
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
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exchange a[i] with a[p] and increment p
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
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exchange a[i] with a[j]
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

\ \
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exchange a[j] with a[q] and decrement g
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
\ v
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

exchange a[i] with a[j]

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

¥ v
P P D PV P 7 v P
) 0) ) )
lo i j hi

exchange a[i] with a[p] and increment p
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
p q
¥ ¥
P P P C : V P 7 Y P
0 0

exchange a[j] with a[q] and decrement g

hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

j hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

lo i j hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

1 ) 1

lo i j hi
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Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

[ hi

pointers cross
62



Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[j] with a[p]

hi
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Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[j] with a[p]
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Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.
e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

\
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exchange a[j] with a[p]
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Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[i] with a[q]

hi
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Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[i] with a[q]

hi
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Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

3-way partitioned
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