2.3 QUICKSORT PARTITIONING DEMO

» Sedgewick 2-way
» Dijkstra 3-way
» Bentley-Mcllroy 3-way

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - September 24,2011 8:19:02 AM

SEDGEWICK 2-WAY PARTITIONING

rithms

F O UR EDITION

Alg

RO BERT SEDGEWICK K EVIN W AYNE

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - September 24,2011 8:19:02 AM

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop i scan because a[i] >= a[lo]

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop i scan because a[i] >= a[lo]

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop i scan because a[i] >= a[lo]

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].
* Scan j from right to left so long as a[j1 > a[lo].

e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop j scan and exchange a[i] with a[j]

Quicksort partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].
* Scan j from right to left so long as a[j1 > a[lo].

e Exchange a[i] with a[31.

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

t t1

i

stop i scan because a[i] >= a[lo]

20

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

stop j scan because a[j] <= a[lo]

21

Quicksort partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j1 > a[lo].
e Exchange a[i] with a[31.

When pointers cross.
* Exchange a[10] with a[j].

K C A E E L P U T M Q
t r 1
lo j [

pointers cross: exchange a[lo] with a[j]

22

Quicksort partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].
* Scan j from right to left so long as a[j1 > a[lo].

e Exchange a[i] with a[31.

When pointers cross.
* Exchange a[10] with a[j].

E C A E K L P U T M S
)))
lo J

partitioned!

23

DIJKSTRA 3-WAY PARTITIONING

rithms

F O UR EDITION

Alg

RO BERT SEDGEWICK K EVIN W AYNE

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - September 24,2011 8:19:02 AM

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].
e Scan i from left to right.

- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

It i

gt

vy
P A B X W P P \Y P
1
lo
invariant
<V =V >V

hi

25

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.

- (a[i]
- (a[i]

- (a[i]

< v): exchange a[1t] with a[i] and increment both 1t and i

>

v): exchange a[gt] with a[i] and decrement gt

v): increment i

invariant

<V

>V

gt

27

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v):! increment i

invariant

<V =V >V

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i] and decrement gt
- (a[i] == v):! increment i

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

It i gt

v vy

invariant

Dijkstra 3-way partitioning

e Let v be partitioning item a[lo].

e Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i] and increment both 1t and i

- (a[i] > v): exchange a[gt] with a[i] and decrement gt

- (a[i] == v): increment i

invariant

BENTLEY-MCILROY 3-WAY PARTITIONING

rithms

F O UR EDITION

Alg

RO BERT SEDGEWICK K EVIN W AYNE

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - September 24,2011 8:19:02 AM

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

©
o]

<
<«

41

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

42

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

43

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
v v
P X W P P V P D P Z
) 1 0

hi

44

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

v v
P X W P P V P D P C
0 1 0 0
lo i j hi

exchange a[i] with a[j]

45

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi

46

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi

47

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

v v
P W P P V P D P
0 0 1 0
lo [j hi

exchange a[i] with a[j]

48

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

\ \
P : P P P V P D :
1 ? 1 1
lo [j hi

exchange a[i] with a[p] and increment p

49

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi

50

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

hi

51

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

\ v
P P P P V P D
0 0 0 0
lo i j hi

exchange a[i] with a[j]

52

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

\ \
P P E L P Vv P P Y /
1 1 1 1
lo [j hi

exchange a[j] with a[q] and decrement g

53

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
\ v
P P | P V P P
) t 0 0

hi

54

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
P q
\ v
P P P V P P
) t 0 0

hi

55

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

exchange a[i] with a[j]

hi

56

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

¥ v
P P D PV P 7 v P
) 0)))
lo i j hi

exchange a[i] with a[p] and increment p

57

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.
If a[j] == a[lol, exchange a[j] with a[q] and decrement q.
p q
¥ ¥
P P P C : V P 7 Y P
0 0

exchange a[j] with a[q] and decrement g

hi

58

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

j hi

59

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

lo i j hi

60

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

1) 1

lo i j hi

61

Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
e Scan i from left to right so long as a[i] < a[lo].

Scan j from right to left so long as a[3j1 > a[lo].

Exchange a[i] with a[j].

If a[i] == a[lo], exchange a[i] with a[p] and increment p.

If a[j] == a[lol, exchange a[j] with a[q] and decrement q.

[hi

pointers cross
62

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[j] with a[p]

hi

63

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[j] with a[p]

hi

64

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.
e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

\

P D B C A P P Vv Y / W P
1 1 t 1
lo j [hi

exchange a[j] with a[p]

65

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[i] with a[q]

hi

66

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

exchange a[i] with a[q]

hi

67

Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

e Scan j and p from right to left and exchange a131 with a[p].
e Scan i and q from left to right and exchange a[i1 with a[q].

3-way partitioned

68

