Princeton University
COS 217: Introduction to Programming Systems
Pointer-Related Operators

Key

p, p1, p2 Pointer variables
i An integral expression

Operators Meaningful for Any Pointer Variable

Dereference Operator

*p The contents of the memory referenced by p.

Equality and Inequality Relational Operators

p1 == p2 1 if p1 is equal to p2, and 0 otherwise.
p1 != p2 1 if p1 is unequal to p2, and 0 otherwise.

Assignment Operator

Operators Meaningful for Pointers that Reference Array Elements

Arithmetic Operators

p + i The address of the ith element after the one referenced by p.
i + p The address of the ith element after the one referenced by p.
p - i The address of the ith element before the one referenced by p.
p++ Side effect: Increment p to point to the next element.
The previous value of p.
++p Side effect: Increment p to point to the next element.
The new value of p.
p-- Side effect: Decrement p to point to the previous element.
The previous value of p.
--p Side effect: Decrement p to point to the previous element.
The new value of p.

Arithmetic Operators

p1 - p2 The "span" of p1 and p2.

Relational Operators

p1 < p2 1 if p1 is less than p2, and 0 otherwise.
p1 <= p2 1 if p1 is less than or equal to p2, and 0 otherwise.
p1 > p2 1 if p1 is greater than p2, and 0 otherwise.
p1 >= p2 1 if p1 is greater than or equal to p2, and 0 otherwise.
Assignment Operators

\[p += i \]
Side effect: Increment \(p \) so its value is the address of the \(i \)th element after the one referenced by \(p \).
The new value of \(p \).

\[p -= i \]
Side effect: Decrement \(p \) so its value is the address of the \(i \)th element before the one referenced by \(p \).
The new value of \(p \).

Disallowed

\[p1 + p2 \]
\[i - p \]
\[i += p \]
\[i -= p \]
\[p == i \]

Array Subscripting Operator

\[p[i] \]
\(*(p + i) \), that is, the contents of memory at the address that is \(i \) elements after the address referenced by \(p \).