
1

1

Performance Improvement
Revisited!

2

Goals of this Lecture!
• Help you learn how to:"

•  Improve program performance by exploiting knowledge
of underlying system"
•  Compiler capabilities"
•  Hardware architecture"
•  Program execution"

• And thereby:"
•  Help you to write efficient programs"
•  Review material from the second half of the course"

2

3

Improving Program Performance!
• Most programs are already “fast enough”"

•  No need to optimize performance at all"
•  Save your time, and keep the program simple/readable"

• Most parts of a program are already “fast enough”"
•  Usually only a small part makes the program run slowly"
•  Optimize only this portion of the program, as needed"
"

• Steps to improve execution (time) efficiency"
•  Do timing studies (e.g., gprof)"
•  Identify hot spots"
•  Optimize that part(s) of the program!
•  Repeat as needed"

4

Ways to Optimize Performance!
• Better data structures and algorithms"

•  Generally improves the “asymptotic complexity”!
•  Better scaling of computation/storage as input grows"
•  E.g., going from O(n2) sorting algorithm to O(n log n)!

•  Clearly important if large inputs are expected"
•  Requires understanding data structures and algorithms"

• Better source code the compiler can optimize"
•  Generally improves the “constant factors”!

•  Faster computation during each iteration of a loop"
•  E.g., going from 1000n to 10n running time"

•  Clearly important if a portion of code is running slowly"
•  Requires understanding hardware, compiler, execution"

3

5

Helping the Compiler Do Its Job!

6

Optimizing Compilers!
• Provide efficient mapping of program to machine"

•  Register allocation"
•  Eliminating minor inefficiencies"

• Donʼt (usually) improve asymptotic efficiency"
•  Up to the programmer to select best overall algorithm"

• Have difficulty overcoming “optimization blockers”"
•  Potential function side-effects"
•  Potential memory aliasing"

4

7

Limitations of Optimizing Compilers!
• Fundamental constraint:"

•  Compiler must not change program behavior"
•  Ever, even under rare pathological inputs"

• Behavior obvious to programmer can be
obfuscated by languages and coding styles"
•  Variable types suggest broader range of values than

program uses"
•  Array elements remain unchanged by function calls"

• Most analysis is performed only within functions"
•  Whole-program analysis is too expensive in most cases"

• Most analysis is based only on static information"
•  Compiler has difficulty anticipating run-time inputs"

8

Avoiding Repeated Computation!
• A good compiler recognizes simple optimizations"

•  E.g. avoiding redundant computations in simple loops"
•  Still, programmer may still want to make it explicit"

• Example"
•  Repetition of computation: n * i (doesnʼt depend on j)"

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n * i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

5

9

Worrying About Side Effects!
•  Compiler cannot always avoid repeated computation"

•  May not know if the code has a “side effect”"
•  … that makes the transformation change the code’s behavior"

•  Is this transformation okay?"

•  Not necessarily, if"

int func1(int x) {
 return f(x) + f(x) + f(x) + f(x);
}

int func1(int x) {
 return 4 * f(x);
}

int counter = 0;

int f(int x) {
 return counter++;
}

And this function may be defined in
another file known only at link time

10

Another Example of Side Effects!
•  Is this optimization okay?"

• Short answer: it depends"
•  Compiler often cannot tell"
•  Most compilers do not try to identify side effects"

• Programmer knows best"
•  And can decide whether the optimization is safe"

for (i = 0; i < strlen(s); i++) {
 /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++) {
 /* Do something with s[i] */
}

6

11

Memory Aliasing!
•  Is this optimization okay?"

"

• Not necessarily, what if xp == yp?"
•  First version: result is 4 times *xp"
•  Second version: result is 3 times *xp"

void twiddle(int *xp, int *yp) {
 *xp += *yp;
 *xp += *yp;
}

void twiddle(int *xp, int *yp) {
 *xp += 2 * *yp;
}

12

Memory Aliasing!
• Memory aliasing"

•  Single data location accessed through multiple names"
•  E.g., two pointers that point to the same memory location"

• Modifying the data using one name implicitly
modifies the values seen through other names"

• Blocks optimization by the compiler"
•  The compiler cannot tell when aliasing may occur"
•  … and so must forgo optimizing the code"

• Programmer often does know "
•  And can optimize the code accordingly"

xp, yp

7

13

Another Aliasing Example!
•  Is this optimization okay?"

• Not necessarily"
•  If y and x point to the same location in memory…"
•  … the correct output is “x = 10\n”"

int *x, *y;
…
*x = 5;
*y = 10;
printf(“x=%d\n”, *x);

printf(“x=5\n”);

14

Summary: Helping the Compiler!
• Compiler can perform many optimizations"

•  Register allocation"
•  Eliminating inefficiencies"

• But often the compiler needs your help"
•  Knowing if code is free of side effects"
•  Knowing if memory aliasing will not happen"

• Modifying the code can lead to better performance"
•  Profile the code to identify the “hot spots”"
•  Look at the assembly language the compiler produces"
•  Rewrite the code to get the compiler to do the right thing"

8

15

Exploiting the Hardware!

16

Underlying Hardware!
•  Implements a collection of instructions"

•  Instruction set varies from one architecture to another"
•  Some instructions may be faster than others"

•  Has registers and caches that are faster than main memory"
•  Number of registers and sizes of caches vary"
•  Exploiting both spatial and temporal locality"

•  Exploits opportunities for parallelism"
•  Pipelining: decoding one instruction while running another"

•  Benefits from code that runs in a sequence"
•  Superscalar: perform multiple operations per clock cycle"

•  Benefits from operations that can run independently"
•  Speculative execution: performing instructions before knowing they

will be reached (e.g., without knowing outcome of a branch)"

9

17

Addition Faster Than Multiplication!
• Recognize sequences of products"

•  Replace multiplication with repeated addition "

for (i = 0; i < n; i++) {
 int ni = n * i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

18

Bit Operations Faster Than Arithmetic!

• Shift operations to multiple/divide by powers of 2"
•  “x >> 3” is faster than “x/8”"
•  “x << 3” is faster than “x * 8”"

• Bit masking is faster than  
mod operation"
•  “x & 15” is faster than “x % 16”"

0 0 1 1 0 1 0 1 53

1 1 0 1 0 0 0 0 53<<2

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1 5

10

19

Caching: Matrix Multiplication!
• Caches"

•  Slower than registers, but faster than main memory"
•  Both instruction caches and data caches"

• Locality"
•  Temporal locality: recently-referenced items are likely to

be referenced in near future"
•  Spatial locality: Items with nearby addresses tend to be

referenced close together in time"

• Matrix multiplication"
•  Multiply n-by-n matrices A and B, and store in matrix C"
•  Performance heavily depends on effective use of caches"

20

Matrix Multiply: Cache Effects!

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 for (k=0; k<n; k++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

• Reasonable cache effects"
•  Good spatial locality for A"
•  Poor spatial locality for B"
•  Good temporal locality for C" A" B" C"

(i,*)"

(*,j)"

(i,j)"

11

21

Matrix Multiply: Cache Effects!

• Rather poor cache effects"
•  Bad spatial locality for A"
•  Good temporal locality for B"
•  Bad spatial locality for C"

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * b[k][j];

 }

} ""

A" B" C"

(*,j)"

(k,j)"

(*,k)"

22

Matrix Multiply: Cache Effects!

• Good cache effects"
•  Good temporal locality for A"
•  Good spatial locality for B"
•  Good spatial locality for C"

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 for (j=0; j<n; j++)

 c[i][j] += a[i][k] * b[k][j];

 }

}

A" B" C"

(i,*)"
(i,k)" (k,*)"

12

23

Parallelism: Loop Unrolling!
• What limits the performance?"

• Limited apparent parallelism"
•  One main operation per iteration (plus book-keeping)"
•  Not enough work to keep multiple functional units busy"
•  Frequent branches disrupt instruction pipeline"

• Solution: unroll the loop"
•  Perform multiple operations on each iteration"

for (i = 0; i < length; i++)
 sum += data[i];

24

Parallelism: After Loop Unrolling!
•  Original code"

•  After loop unrolling (by three)"

for (i = 0; i < length; i++)
 sum += data[i];

/* Combine three elements at a time */
limit = length – 2;
for (i = 0; i < limit; i+=3)
 sum += data[i] + data[i+1] + data[i+2];

/* Finish any remaining elements */
for (; i < length; i++)
 sum += data[i];

13

25

Exploiting Knowledge of
Program Execution!

26

Avoiding Function Calls!
•  Function calls are expensive"

•  Caller saves registers and pushes arguments on stack"
•  Callee saves registers and pushes local variables on stack"
•  Call and return disrupt the sequence flow of the code"

•  Function inlining:"

void g(void) {
 /* Some code */
}

void f(void) {
 …
 g();
 …
}

void f(void) {
 …
 /* Some code */
 …
}

Some compilers support
“inline” keyword directive.

14

27

Writing Your Own Malloc and Free!
•  Dynamic memory management"

• malloc() to allocate blocks of memory"
• free() to free blocks of memory"

•  Existing malloc() and free() implementations"
•  Designed to handle a wide range of request sizes"
•  Good most of the time, but rarely the best for all workloads"

•  Designing your own dynamic memory management"
•  Forego using traditional malloc() and free(), and write your own"
•  E.g., if you know all blocks will be the same size"
•  E.g., if you know blocks will usually be freed in the order allocated"
•  E.g., <insert your known special property here>"

28

Conclusion!
• Work smarter, not harder"

•  No need to optimize a program that is “fast enough”"
•  Optimize only when, and where, necessary"

• Speeding up a program"
•  Better data structures and algorithms: asymptotic behavior"
•  Optimized code: constant factors"

• Techniques for speeding up a program"
•  Coax the compiler"
•  Exploit capabilities of the hardware"
•  Capitalize on knowledge of program execution"

15

29

Course Wrap Up!

30

The Rest of the Semester!
•  Final Assignment Due: Sunday Jan 15"
•  Deans Date: Tuesday Jan 17"

•  Cannot submit final assignment after 5:00PM"

•  Final Exam: Friday Jan 20"
•  9 AM in room Frick Chemistry Laboratory B02"
•  Exams from previous semesters are online at"

•  http://www.cs.princeton.edu/courses/archive/fall11/cos217/exam2prep/"
•  Covers entire course, with emphasis on second half of the term"
•  Closed book, closed notes, closed slides, closed calculators, etc."

•  Office hours during reading/exam period"
•  Daily, times TBA on course mailing list"

•  Review sessions"
•  During exam period, time TBA on course mailing list"

16

31

Goals of COS 217!
• Understand Abstraction, Modularity, Interfaces and

Implementations"

• Understand boundary between code and computer"
•  Machine architecture, Operating systems, Compilers"

• Learn C and the Unix development tools"
•  Improve your programming skills"

•  Programming experience"
•  Emphasis on modularity and debugging"

32

Relationship to Other Courses!
• Machine architecture"

•  Logic design (306) and computer architecture (471)"
•  COS 217: assembly language and basic architecture"

• Operating systems"
•  Operating systems (318)"
•  COS 217: virtual memory, system calls, and signals"

• Compilers"
•  Compiling techniques (320)"
•  COS 217: compilation process, symbol tables, assembly

and machine language"

• Software systems"
•  Numerous courses, independent work, etc."
•  COS 217: programming skills, UNIX tools, and ADTs"

17

33

Lessons About Computer Science!
• Modularity"

•  Well-defined interfaces between components"
•  Allows changing the implementation of one component

without changing another"
•  The key to managing complexity in large systems"

• Resource sharing"
•  Time sharing of the CPU by multiple processes"
•  Sharing of the physical memory by multiple processes"

•  Indirection"
•  Representing address space with virtual memory"
•  Manipulating data via pointers (or addresses)"

34

Lessons Continued!
• Hierarchy"

•  Memory: registers, cache, main memory, disk, tape, …"
•  Balancing the trade-off between fast/small and slow/big"

• Bits can mean anything"
•  Code, addresses, characters, pixels, money, grades, …"
•  Arithmetic can be done through logic operations"
•  The meaning of the bits depends entirely on how they

are accessed, used, and manipulated"

18

35

Have a Great Break!

