
1

1

Assembly Language: Overview!

2

Goals of this Lecture!

• Help you learn:"
• The basics of computer architecture"
• The relationship between C and assembly

language"
•  IA-32 assembly language, through an example"

"

2

3

Three Levels of Languages!

4

High-Level Language!
• Examples: C, C++,

Java, Pascal, …"

• Make programming
easier by describing
operations in a semi-
natural language"

•  Increase the portability
of the code"

• One line of code may
involve many low-level
operations"

count = 0;
while (n > 1) {
 count++;
 if (n & 1)
 n = n*3 + 1;
 else
 n = n/2;
}

3

5

Assembly Language!
• E.g., IA-32 from Intel"
• Tied to specifics of the

underlying machine"

• Commands and names
represent bit patterns, to
make code readable,
writeable by humans"

• Hand-coded assembly
may be more efficient
than what compiler
generates"

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

6

Machine Language!
• Also tied to the

underlying machine"
• What hardware sees

and deals with"
• Every instruction is a

sequence of one or
more numbers"

• All stored in memory
on the computer, and
read and executed"

• Unreadable by humans"

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

9222 9120 1121 A120 1121 A121 7211 0000

0000 0001 0002 0003 0004 0005 0006 0007

0008 0009 000A 000B 000C 000D 000E 000F

0000 0000 0000 FE10 FACE CAFE ACED CEDE

1234 5678 9ABC DEF0 0000 0000 F00D 0000

0000 0000 EEEE 1111 EEEE 1111 0000 0000

B1B2 F1F5 0000 0000 0000 0000 0000 0000

4

7

Why Learn Assembly Language?!
• Write faster code (even in high-level language)"

•  By understanding which high-level constructs are more
efficient at the machine level"

• Understand how things work underneath"
•  Learn the basic organization of the underlying machine"
•  Learn how the computer actually runs a program"
•  Design better computers in the future"

• Some software is written in assembly language"
•  Code that really needs to run quickly"
•  Code for embedded systems, network processors, etc."

8

Why Learn Intel IA-32 Assembly?!
• Program natively on our computing platform"

•  Rather than using an emulator to mimic another machine"

• Learn instruction set for the most popular platform"
•  Most likely to work with Intel platforms in the future"

• But, this comes at some cost in complexity"
•  IA-32 has a large and varied set of instructions"
•  More instructions than are really useful in practice"

• Fortunately, you won’t need to use everything"

5

9

Computer Architecture!

10

A Typical Computer !

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

6

11

Von Neumann Architecture!
• Central Processing Unit"

•  Control unit"
•  Fetch, decode, and execute "

•  Arithmetic and logic unit"
•  Execution of low-level operations"

•  General-purpose registers"
•  High-speed temporary storage"

•  Data bus"
•  Provide access to memory"

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus

12

Von Neumann Architecture!
• Memory"

•  Store executable machine-language
instructions (text section)"

•  Store data (rodata, data, bss, heap,
and stack sections)"

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus

TEXT"
RODATA"

DATA"
BSS"

HEAP"
"
"
"

STACK"

7

13

Control Unit: Instruction Pointer!
• Stores the location of the next instruction"

•  Address to use when reading machine-language
instructions from memory (i.e., in the text section)"

• Changing the instruction pointer (EIP)"
•  Increment it to go to the next instruction"
•  Or, load a new value into EIP to “jump” to a new location"

EIP

14

Control Unit: Instruction Decoder!
• Determines what operations need to take place"

•  Translate the machine-language instruction "

• Control what operations are done on what data"
•  E.g., control what data are fed to the ALU"
•  E.g., enable the ALU to do multiplication or addition"
•  E.g., read from a particular address in memory"

ALU

src1 src2

dst

operation flag/carry ALU

8

15

Registers!
• Small amount of storage on the CPU"

•  Can be accessed more quickly than main memory"
•  Each register has a name, which assembly code uses"

•  Instructions move data in and out of registers"
•  Loading (into) registers from main memory"
•  Storing (from) registers to main memory"

•  Instructions manipulate the register contents"
•  Registers essentially act as temporary variables"
•  For efficient manipulation of the data"

• Registers are the top of the memory hierarchy"
•  Ahead of caches, main memory, disk, tape, …"

16

Keeping it Simple: All 32-bit Words!
• Simplifying assumption: all data in four-byte units"

•  Memory is 32 bits wide"
•  Registers are 32 bits wide"

•  In practice, can manipulate different sizes of data"

EAX
EBX

9

17

C Code vs. Assembly Code!

18

Kinds of Instructions!
•  Reading and writing data!

•  count = 0!
•  n!

•  Arithmetic and logic operations!
•  Increment: count++!
•  Multiply: n * 3!
•  Divide: n/2!
•  Logical AND: n & 1!

•  Checking results of comparisons !
•  Is (n > 1) true or false?!
•  Is (n & 1) non-zero or zero?!

•  Changing the flow of control!
•  To the end of the while loop (if “n > 1”)!
•  Back to the beginning of the loop!
•  To the else clause (if “n & 1” is 0)!

count = 0;
while (n > 1) {
 count++;
 if (n & 1)
 n = n*3 + 1;
 else
 n = n/2;
}

10

19

Variables in Registers!

Registers

n %edx
count %ecx

Referring to a register: percent sign (“%”)

count = 0;
while (n > 1) {
 count++;
 if (n & 1)
 n = n*3 + 1;
 else
 n = n/2;
}

20

Immediate and Register Addressing!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

 movl $0, %ecx

 addl $1, %ecx

Referring to a immediate operand: dollar sign (“$”)

Read directly
from the

instruction

written to
a register

11

21

Immediate and Register Addressing!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

 movl %edx, %eax
 andl $1, %eax

Computing intermediate value in register EAX

22

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

Immediate and Register Addressing!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

Update %edx this time, since changing value of n

12

23

 sarl $1, %edx

Immediate and Register Addressing!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

24

Changing Program Flow!
•  Cannot simply run next instruction"

•  Check result of a previous operation"
•  Jump to appropriate next instruction"

•  Flags register (EFLAGS)"
•  Stores the status of operations, such

as comparisons, as a side effect"
•  E.g., last result was positive, negative,

zero, etc."

•  Jump instructions"
•  Load new address in instruction pointer"

•  Example jump instructions"
•  Jump unconditionally (e.g., “}”)"
•  Jump if zero (e.g., “while (n&1)”)"
•  Jump if greater/less (e.g., “if (n>1)”)"

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

13

25

Conditional and Unconditional Jumps!
•  Comparison cmpl compares two integers"

•  Done by subtracting the first number from the second"
•  Discarding the results, but setting flags as a side effect"

•  Example:"
• cmpl $1, %edx (computes %edx – 1)"
• jle endloop (checks whether result was 0 or negative)"

•  Logical operation andl compares two integers"
•  Example: "

• andl $1, %eax (bit-wise AND of %eax with 1)"
• je else (checks whether result was 0)"

•  Also, can do an unconditional branch jmp
•  Example: "

• jmp endif and jmp loop

26

 …

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

Jump and Labels: While Loop!

while (n>1) {

}

Checking if EDX
is less than or

equal to 1.

14

27

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

Jump and Labels: While Loop!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

28

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 …

Jump and Labels: If-Then-Else!

 if (n&1)
 ...
 else
 ...

“then” block

“else” block

 …

15

29

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

Jump and Labels: If-Then-Else!

count=0;
while(n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

“then” block

“else” block

30

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

Making the Code More Efficient…!

count=0;
while(n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

Replace with
“jmp loop”

16

31

 movl %edx, %eax
 andl $1, %eax
 je else

 jmp endif
else:

endif:
 sarl $1, %edx

 movl %edx, %eax
 addl %eax, %edx
 addl %eax, %edx
 addl $1, %edx

 addl $1, %ecx

loop:
 cmpl $1, %edx
 jle endloop

 jmp loop
endloop:

 movl $0, %ecx

Complete Example!

count=0;
while (n>1) {
 count++;
 if (n&1)
 n = n*3+1;
 else
 n = n/2;
}

n %edx
count %ecx

32

Reading IA-32 Assembly Language!
• Referring to a register: percent sign (“%”)"

•  E.g., “%ecx” or “%eip”"

• Referring to immediate operand: dollar sign (“$”)"
•  E.g., “$1” for the number 1"

• Storing result: typically in the second argument"
•  E.g. “addl $1, %ecx” increments register ECX "
•  E.g., “movl %edx, %eax” moves EDX to EAX"

• Assembler directives: starting with a period (“.”)"
•  E.g., “.section .text” to start the text section of memory"

• Comment: pound sign (“#”)"
•  E.g., “# Purpose: Convert lower to upper case”"

17

33

Conclusions!
• Assembly language"

•  In between high-level language and machine code"
•  Programming the “bare metal” of the hardware, but

mnemonically and not just with bits (machine language)"
•  Loading and storing data, arithmetic and logic

operations, checking results, and changing control flow"

• To get more familiar with IA-32 assembly"
•  Read more assembly-language examples"

•  Chapter 3 of Bryant and O’Hallaron book"
•  Generate your own assembly-language code"

•  gcc217 –S –O2 code.c"

