
1

1

Dynamic Memory Management!

!
 
!

2

Goals of this Lecture!
• Help you learn about:!

•  Dynamic memory management techniques!
•  Garbage collection by the run-time system (Java)!
•  Manual deallocation by the programmer (C, C++)!

•  Design decisions for the “K&R” heap manager
implementation!
•  Circular linked-list of free blocks with a “first fit”

allocation!
•  Coalescing of adjacent blocks to create larger blocks!

2

3

Part 1:!

What do malloc() and free() do?!

4

Memory Layout: Heap!

char* string = "hello";
int iSize;

char* f()
{
 char* p;
 scanf("%d", &iSize);
 p = malloc(iSize);
 return p;
}

Text

BSS

Stack

Heap

Needed when required memory size is not
known before the program runs!

RoData

Data

3

5

Allocating & Deallocating Memory!
• Dynamically allocating memory!

•  Programmer explicitly requests space in memory!
•  Space is allocated dynamically on the heap!
•  E.g., using “malloc” in C, and “new” in Java!

• Dynamically deallocating memory!
•  Must reclaim or recycle memory that is never used again!
•  To avoid (eventually) running out of memory!

• “Garbage”!
•  Allocated block in heap that will not be accessed again !
•  Can be reclaimed for later use by the program!

6

Option #1: Garbage Collection!
• Run-time system does garbage collection (Java)!

•  Automatically determines objects that can’t be accessed!
•  And then reclaims the resources used by these objects!

Object x = new Foo();
Object y = new Bar();
x = new Quux();

if (x.check_something()) {
 x.do_something(y);
}
System.exit(0);

Object Foo()
is never used

again!

4

7

Challenges of Garbage Collection!
• Detecting the garbage is not always easy!

•  “if (complex_function(y)) x = Quux();”!
•  Run-time system cannot collect all of the garbage!

• Detecting the garbage introduces overhead!
•  Keeping track of references to objects (e.g., counter)!
•  Scanning through accessible objects to identify garbage!
•  Sometimes walking through a large amount of memory!

• Cleaning the garbage leads to bursty delays!
•  E.g., periodic scans of the objects to hunt for garbage!
•  Leads to unpredictable “freeze” of the running program!
•  Very problematic for real-time applications!
•  … though good run-time systems avoid long freezes!

8

Option #2: Manual Deallocation!
• Programmer deallocates the memory (C and C++)!

•  Manually determines which objects can’t be accessed!
•  And then explicitly returns the resources to the heap!
•  E.g., using “free” in C or “delete” in C++!

• Advantages!
•  Lower overhead!
•  No unexpected “pauses” !
•  More efficient use of memory!

• Disadvantages!
•  More complex for the programmer!
•  Subtle memory-related bugs!
•  Security vulnerabilities in the (buggy) code!

5

9

Manual Deallocation Can Lead to Bugs!

• Dangling pointers!
•  Programmer frees a region of memory !
•  … but still has a pointer to it!
•  Dereferencing pointer reads or writes nonsense values!

int main(void) {
 char *p;
 p = malloc(10);
 …
 free(p);
 …
 putchar(*p);
}

May print
nonsense
character.

10

Manual Deallocation Can Lead to Bugs!

• Memory leak!
•  Programmer neglects to free unused region of memory!
•  So, the space can never be allocated again!
•  Eventually may consume all of the available memory!

void f(void) {
 char *s;
 s = malloc(50);
 return;
}

int main(void) {
 while (1) f();
 return 0;
}

Eventually,
malloc() returns

NULL

6

11

Manual Deallocation Can Lead to Bugs!

• Double free!
•  Programmer mistakenly frees a region more than once!
•  Leading to corruption of the heap data structure!
•  … or premature destruction of a different object!

int main(void) {
 char *p, *q;
 p = malloc(10);
 …
 free(p);
 q = malloc(10);
 free(p);
 …
}

Might free the
space allocated

to q!

12

malloc() and free() Challenges!
• malloc() may ask for arbitrary number of bytes!
• Memory may be allocated & freed in different order!
• Cannot reorder requests to improve performance!

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

7

13

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

14

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2

8

15

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

16

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

9

17

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4

18

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p2
p3

p4

10

19

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

20

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

11

21

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

22

Heap: Dynamic Memory!
 #include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);

0

0xffffffff

Stack

}
Heap

Heap

char *p1 = malloc(3);
char *p2 = malloc(1);
char *p3 = malloc(4);
free(p2);
char *p4 = malloc(6);
free(p3);
char *p5 = malloc(2);
free(p1);
free(p4);
free(p5);

p1

p5, p2
p3

p4

12

23

Part 2:!
How do malloc() and free() work?!

24

The Program Break!
The program break marks the boundary between

heap and stack!

!
!

!
Initially, stack has maximum size!

00000000

Stack

Heap

FFFFFFFF

program break!

00000000

Stack
FFFFFFFF

program break!

13

25

Acquiring Heap Memory!
Q: How does malloc() acquire heap memory?!
A: Moves the program break downward via sbrk() or brk
()system call!

void *sbrk(intptr_t increment);

•  Increment the program break by the specified amount. Calling the
function with an increment of 0 returns the current location of the
program break. Return 0 if successful and -1 otherwise.!

•  Beware: On Linux contains a known bug; should call only with
argument 0.!

int brk(void *newBreak);

•  Move the program break to the specified address. Return 0 if
successful and -1 otherwise.!

26

Using Heap Memory!

Q: Having acquired heap memory, how do malloc() and
free() manipulate it?!

A: Topic of much research; an introduction…!

!

14

27

Goals for malloc() and free()
• Maximizing throughput!

•  Maximize number of requests completed per unit time!
•  Need both malloc() and free() to be fast!

• Maximizing memory utilization!
•  Minimize the amount of wasted memory!
•  Need to minimize size of data structures!

• Strawman #1: free() does nothing!
•  Good throughput, but poor memory utilization!

• Strawman #2: malloc() finds the “best fit”!
•  Good memory utilization, but poor throughput!

28

Keeping Track of Free Blocks!
• Maintain a list of free blocks of memory!

•  Allocate memory from one of the blocks in the free list!
•  Deallocate memory by returning the block to the free list!
•  When necessary, call brk() to ask OS for additional

memory, and create a new large block!

!

• Design questions!
•  How to keep track of the free blocks in memory?!
•  How to choose an appropriate free block to allocate?!
•  What to do with the left-over space in a free block?!
•  What to do with a block that has just been freed?!

free free free

15

29

Need to Minimize Fragmentation!
•  Internal fragmentation!

•  Block allocated is larger than malloc() requested!
•  E.g., malloc() imposes a minimum size (e.g., 64 bytes)!

• External fragmentation!
•  Enough free memory exists, but no block is big enough!
•  E.g., malloc() asks for 128 contiguous bytes!

64 64 64

33

30

Simple “K&R-Like” Approach!
•  Memory allocated in multiples of a base size!

•  E.g., 16 bytes, 32 bytes, 48 bytes, …!

•  Linked list of free blocks!
• malloc() and free() walk through the list to allocate and

deallocate!

• malloc() allocates the first big-enough block!
•  To avoid sequencing further through the list!

• malloc() splits the free block!
•  To allocate what is needed, and leave the rest available!

•  Linked list is circular!
•  To be able to continue where you left off!

•  Linked list in the order the blocks appear in memory!
•  To be able to “coalesce” neighboring free blocks!

16

31

Allocate Memory in Multiples of Base Size!

• Allocate memory in multiples of a base size!
•  Avoid maintaining very tiny free blocks!
•  Align memory on size of largest data type (e.g., double) !

• Requested size is “rounded up”!
•  Allocation in units of base_size
•  Round:(nbytes + base_size – 1)/base_size

• Example:!
•  Suppose nbytes is 37!
•  And base_size is 16 bytes!
•  Then (37 + 16 – 1)/16 is 52/16 which rounds down to 3!

16 16 5

32

Linked List of Free Blocks!
• Linked list of free blocks!

• malloc() allocates a big-enough block!

• free() adds newly-freed block to the list!

Allocated

Newly
freed

17

33

“First-Fit” Allocation!
• Handling a request for memory (e.g., malloc())!

•  Find a free block that satisfies the request!
•  Must have a “size” that is big enough, or bigger!

• Simplest approach: first fit!
•  Sequence through the linked list!
•  Stop upon encountering a “big enough” free block!

• Example: request for 64 bytes!
•  First-fit algorithm stops at the 128-byte block!

!

48 32 128 64 256

34

Splitting an Oversized Free Block!
• Simple case: perfect fit!
• malloc() asks for 128 bytes, free block has 128 bytes!
•  Simply remove the free block from the list!

• Complex case: splitting the block!
• malloc() asks for 64 bytes, free block has 128 bytes!

48 32 128 64 256

48 32 64 256 64

64

18

35

Circular Linked List of Free Blocks!
• Advantages of making free list a circular list!

•  Any element in the list can be the “beginning”!
•  Don’t have to handle the “end” of the list as special!

• Performance optimization!
•  Make the head be where last block was found!
•  More likely to find “big enough” blocks later in the list!

48 32 64 256 64

new head

36

Maintaining Free Blocks in Order!
• Keep list in order of increasing addresses!

•  Makes it easier to coalesce adjacent free blocks!

• Though, makes calls to free() more expensive!
•  Need to insert the newly-freed block in the right place!

In
use

In
use

In
use

Free list

19

37

Coalescing Adjacent Free Blocks!
• When inserting a block in the free list!

•  “Look left” and “look right” for neighboring free blocks!

In
use

In
use

In
use

In
use

In
use

“Left” “Right”

38

Conclusion!
• Elegant simplicity of K&R malloc() and free()

•  Simple header with pointer and size in each free block!
•  Simple circular linked list of free blocks!
•  Relatively small amount of code (~25 lines each)!

• Limitations of K&R functions in terms of efficiency!
• malloc() requires scanning the free list!

•  To find the first free block that is big enough!
• free() requires scanning the free list!

•  To find the location to insert the to-be-freed block!

