

Primality Testing

Goals of Assignment

- Writing software as part of a large team
- Living and breathing what COS 217 is about
 - Abstraction, separation of interfaces and implementations, modularity
- Also, more on ...
 - Advanced C programming
 - Creating and using ADTs
 - GNU/UNIX programming tools
- Bonus: Learn a little about implementing security

Why Test for Primality of Numbers

- Modern cryptographic methods depend on a key fact
 - Large integers can be difficult to break into prime factors
- RSA public-key cryptography system
 - One who wants to receive messages publishes an integer k, that is the product of two large (e.g., 200-digit) prime integers p and q
 - Anyone who knows k can encode a message
 - But only the person who knows p and q can decode the message
 - Finding out p and q from k is hard, for very large k

How to find large primes p and q?

- Simplest way: choose a random 200-digit integer, and test whether it is prime
- How to test whether an integer n is prime?
- Could try dividing by each prime integer up to sqrt(n)
- You'd be waiting a while ...
 - 200-digit integer n is of size up to 10^{200}
 - There are approximately $4 \cdot 10^{97}$ primes less than sqrt(10^{200})
 - At the rate of one per microsecond, this method would take you 10⁷⁴ times the age of the universe to test n

Fortunately ...

- Can learn that an integer is composite (i.e. not prime) without even learning its factors, and in reasonable time
- Mathematical facts
 - For a prime integer p and an integer a in the range $1 \le a < p$:

 $a^{p-1} \mod p = 1$

• But for a typical composite integer c:

 $a^{c-1} \mod c \neq 1$ for at least half the a's.

- So, to test an integer n for primality:
 - Choose a random a (in $1 \le a < n$)
 - Raise it to the (n-1)st power modulo n, and see if you get 1
 - If not, n is composite. If so, it could be prime or composite
 - Try k times. If for k random a's you get 1, then the chance that n isn't prime is about 2^{-k}
 - If say 40 tries result in 1 each time, n is almost certain to be prime

Primality Testing Program

- Read in an integer n
- For each of 40 randomly chosen a's (s.t. $1 \le a < n$), compute $a^{n-1} \mod n$
- If result is 1 all 40 times, report: "*n is probably prime*"
- If any one of 40 tries yields something other than one, report: "*n is composite (i.e. not prime)*"

a=3 n=7
$$a^{n-1} \mod n = 3^{7-1} \mod 7 = 1$$
 7 is probably prime

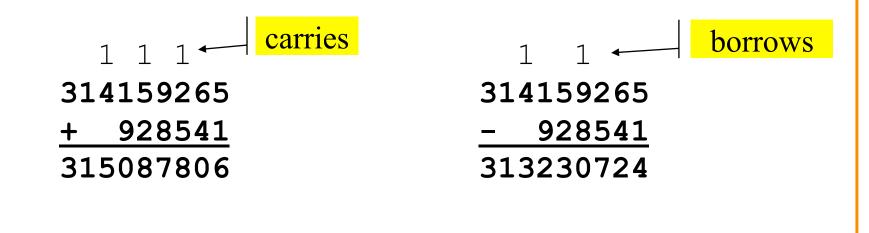
- a=5 n=3 $a^{n-1} \mod n = 5^{7-1} \mod 7 = 1$
- a=8 n=9 $a^{n-1} \mod n = 8^{9-1} \mod 9 = 1$ -9 is composite (for sure)
- a=5 n=9 $a^{n-1} \mod n = 5^{9-1} \mod 9 = 7$
- Looks good, but ...

BigInts ...

- We're talking about doing exponentiation and modulus etc on 200-digit (decimal digit) integers
- The hats computers can only store 32-bit integers (10 decimal digits)
- Solution: represent a big integer as an array of digits in the base b
- What is b?
 - Unsigned int can hold integers in the range 0..4294967295
 - So use base b = 4294967296, so that each unsigned int on hats represents a "digit" in base b
 - A 200-digit decimal integer is just an array of about 21 unsigned ints, so 21 "digits" in this base b representation
- Let's look at how we do arithmetic with BigInts

BigInt Addition and Subtraction

- Use same rules that you learned in grade school for decimal digits
- Carries, borrows ...
- · Just start at the low-order digit and work your way up



Detecting carry and borrow

When using an unsigned long to implement a "1-digit" add (or subtract),

how do you detect carry (or borrow)?

unsigned long x = **3018591856** +

2847567187;

printf("=%d",x); =1571191747

(true answer is 5866159043, but that's not what you get!) by the way, $1571191747 = 5866159043 \mod 2^{32}$

BigInt Multiplication

- To multiply, use a recursive approach based on these mathematical rules:
 - $b = 0 \Rightarrow a \cdot b = 0$
 - b even \Rightarrow a \cdot b = (a \cdot b/2) \cdot 2
 - b odd \Rightarrow a · b = ((a · b/2) · 2) + a

where "/" is truncating integer division. (Recall that multiplying and dividing by 2 on a digital computer is easy)

$$93 \cdot 13 =$$

$$(93 \cdot 6) \cdot 2 + 93 =$$

$$((93 \cdot 3) \cdot 2) \cdot 2 + 93 =$$

$$(((93 \cdot 1) \cdot 2 + 93) \cdot 2) \cdot 2 + 93 =$$

$$(((93 \cdot 0 + 93) \cdot 2 + 93) \cdot 2) \cdot 2 + 93 =$$

$$(((0 + 93) \cdot 2 + 93) \cdot 2) \cdot 2 + 93 =$$

$$1209$$

BigInt Division and Modulus

Recursive approach based on these mathematical rules:
 a < b ⇒ a/b = 0 rem a
 a/(2·b) = q rem r ⇒ r < b ⇒ a/b = (2·q) rem r
 a/(2·b) = q rem r ⇒ r≥b ⇒ a/b = (2·q) + 1 rem (r-b)

$$1200 / 13 = 46 \text{ rem } 4$$

$$1200 / 26 = 46 \text{ rem } 4$$

$$1200 / 52 = 23 \text{ rem } (56-52) = 23 \text{ rem } 4$$

$$1200 / 104 = 11 \text{ rem } (160-104) = 11 \text{ rem } 56$$

$$1200 / 208 = 5 \text{ rem } (368-208) = 5 \text{ rem } 160$$

$$2 \text{ rem } 368$$

$$1200 / 832 = 1 \text{ rem } (1200-832) = 1 \text{ rem } 368$$

$$0 \text{ rem } 1200$$

BigInt Exponentiation

- For a^k, need to multiply a by itself k times
 - If k = n-1, will take much longer than age of universe
- But we can use the following identities:
 - k even $\Rightarrow a^k = (a^{k/2})^2$
 - k odd $\Rightarrow a^k = a \cdot a^{k-1}$

$$6^{10} = (6^5)^2 = (6 \cdot (6^2)^2)^2 = (6 \cdot (36)^2)^2 = (7776)^2 = 60466176$$

BigInt Exponentiation (contd.)

- Another problem: sizes of numbers
 - a and k are both 200-digit numbers
 - taking a 200 digit number to the 10²⁰⁰ power gives an integer with more digits than atoms in the universe
 - won't fit on little ol' hats
- But, don't really have to compute aⁿ⁻¹
 - only a^{n-1} mod n, which is smaller integer, only 200 decimal digits
- Can use this mathematical identity for exponentiation:
 - $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$
- Thus, can keep all intermediate results down to 400 digits
 - or 200, if you're clever *during* the multiply, but don't worry about that
- Read assignment for all the rest ...

Sanity check

• Will all this stuff run fast enough?

Answer: do a quick big-Oh analysis

Dividing into modules

- You'll need the basic operations for primality testing (add, subtract, divide-with-remainder, exponentiation) as well as conversion to/from decimal, and perhaps some debugging functionality
- Pay particular attention to: which algorithms need to see the *representation* of a bigint, and which do not
- You may have to decide on memory-management (malloc/free) protocols ...
- The "dc" utility on Unix can be really useful in checking answers during debugging; do "man dc" at the shell prompt, or google "dc man page"