
1 

Primality Testing!
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Goals of Assignment!
•  Writing software as part of a large team"

•  Living and breathing what COS 217 is about"
•  Abstraction, separation of interfaces and implementations,

 modularity"

•  Also, more on …"
•  Advanced C programming"
•  Creating and using ADTs"
•  GNU/UNIX programming tools"

•  Bonus: Learn a little about implementing security"
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Why Test for Primality of Numbers!

•  Modern cryptographic methods depend on a key fact "
•  Large integers can be difficult to break into prime factors"

•  RSA public-key cryptography system"
•  One who wants to receive messages publishes an integer k, that is

 the product of two large (e.g., 200-digit) prime integers p and q"
•  Anyone who knows k can encode a message"
•  But only the person who knows p and q can decode the message"
•  Finding out p and q from k is hard, for very large k"



How to find large primes p and q?!
•  Simplest way: choose a random 200-digit integer, and test

 whether it is prime"

•  How to test whether an integer n is prime? "
•  Could try dividing by each prime integer up to sqrt(n)"
•  Youʼd be waiting a while …"

•  200-digit integer n is of size up to 10200"
•  There are approximately 4 · 1097 primes less than sqrt(10200)"
•  At the rate of one per microsecond, this method would take you 1074

 times the age of the universe to test n"
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Fortunately …!
•  Can learn that an integer is composite (i.e. not prime)

 without even learning its factors, and in reasonable time"

•  Mathematical facts"
•  For a prime integer p and an integer a in the range 1 ≤ a < p:"

ap-1 mod p = 1"
•  But for a typical composite integer c:"

ac-1 mod c ≠ 1 for at least half the a's."

•  So, to test an integer n for primality:"
•  Choose a random a (in 1 ≤ a < n)"
•  Raise it to the (n-1)st power modulo n, and see if you get 1"
•  If not, n is composite. If so, it could be prime or composite"
•  Try k times. If for k random a's you get 1, then the chance that n isn't

 prime is about 2-k"
•  If say 40 tries result in 1 each time, n is almost certain to be prime "
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Primality Testing Program!
•  Read in an integer n"

•  For each of 40 randomly chosen aʼs (s.t. 1 ≤ a < n), compute an-1 mod n"

•  If result is 1 all 40 times, report: ‟n is probably prime”"

•  If any one of 40 tries yields something other than one, report: ‟n is
 composite (i.e. not prime)”"

a=3   n=7     an-1 mod n = 37-1 mod 7 = 1"
a=5   n=3     an-1 mod n = 57-1 mod 7 = 1"
a=8   n=9     an-1 mod n = 89-1 mod 9 = 1"

a=5   n=9     an-1 mod n = 59-1 mod 9 = 7"

•  Looks good, but …! 6 

7 is probably prime 

9 is composite (for sure) 



BigInts …!
•  Weʼre talking about doing exponentiation and modulus etc

 on 200-digit (decimal digit) integers"

•  The hats computers can only store 32-bit integers (10
 decimal digits)"

•  Solution: represent a big integer as an array of digits in the
 base b"

•  What is b?  "
•  Unsigned int can hold integers in the range 0..4294967295"
•  So use base b = 4294967296, so that each unsigned int on hats

 represents a “digit” in base b"
•  A 200-digit decimal integer is just an array of about 21 unsigned ints,

 so 21 “digits” in this base b representation"

•  Letʼs look at how we do arithmetic with BigInts" 7 



BigInt Addition and Subtraction!
•  Use same rules that you learned in grade school for

 decimal digits "

•  Carries, borrows … "
•  Just start at the low-order digit and work your way up"
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  1 1 1  
314159265 
+  928541 
315087806 

  1  1   
314159265 
-  928541 
313230724 

carries borrows 



Detecting carry and borrow!
When using an   unsigned long   to implement a “1-digit” add

 (or subtract),"

  how do you detect carry (or borrow)?"

unsigned long x = 3018591856 +  

                  2847567187; 

printf(“=%d”,x); =1571191747 

(true answer is 5866159043, but thatʼs not what you get!)"
by the way,   1571191747 = 5866159043 mod 232 
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BigInt Multiplication!
•  To multiply, use a recursive approach based on these

 mathematical rules:"
•  b = 0  ⇒ a · b = 0"
•  b even ⇒ a · b = (a · b/2) · 2"
•  b odd  ⇒ a · b = ((a · b/2) · 2) + a"

where "/" is truncating integer division.  (Recall that
 multiplying and dividing by 2 on a digital computer is easy)"
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93·13 = 
(93·6)·2+93 = 
((93·3)·2)·2+93 = 
(((93·1)·2 +93)·2)·2+93 = 
(((93·0+93)·2 +93)·2)·2+93 = 
(((0+93)·2+93)·2)·2+93 = 
 1209 



BigInt Division and Modulus!
•  Recursive approach based on these mathematical rules:"

a < b   ⇒  a/b = 0 rem a"
a/(2·b) = q rem r ⇒    r<b  ⇒   a/b = (2·q) rem r"
a/(2·b) = q rem r ⇒    r≥b  ⇒   a/b = (2·q) + 1 rem (r-b)"
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1200 /   13     =       92 rem 4 
1200 /   26     =       46 rem 4 
1200 /   52     =       23 rem (56-52)     =  23 rem 4 
1200 / 104     =       11 rem (160-104) =  11 rem 56 
1200 / 208     =        5 rem (368-208)  =   5 rem 160 
1200 / 416     =        2 rem 368 
1200 / 832     =        1 rem (1200-832) =  1 rem 368 
1200 /1664    =        0 rem 1200 



BigInt Exponentiation!
•  For ak, need to multiply a by itself k times"

•  If k = n-1, will take much longer than age of universe"

•  But we can use the following identities:"
•  k even ⇒ ak = (ak/2)2"
•  k odd  ⇒ ak = a · ak-1"
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610   = 
(65)2 = 
(6·(62)2)2 = 
(6·(36)2)2 = 
(7776)2 =  
60466176 



BigInt Exponentiation (contd.)!
•  Another problem: sizes of numbers"

•  a and k are both 200-digit numbers"
•  taking a 200 digit number to the 10200 power gives an integer with

 more digits than atoms in the universe"
•  won't fit on little olʼ hats .... "

•  But, don't really have to compute an-1"

•  only an-1 mod n, which is smaller integer, only 200 decimal digits "

•  Can use this mathematical identity for exponentiation:"
•  (a · b) mod n = ((a mod n) · (b mod n)) mod n"

•  Thus, can keep all intermediate results down to 400 digits"
•  or 200, if you're clever during the multiply, but don't worry about that"

•  Read assignment for all the rest …"
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Sanity check!
•  Will all this stuff run fast enough?"

Answer: do a quick big-Oh analysis"

14 



Dividing into modules!
•  Youʼll need the basic operations for primality testing (add, subtract,

 divide-with-remainder, exponentiation) as well as conversion to/from
 decimal, and perhaps some debugging functionality"

•  Pay particular attention to:  which algorithms need to see the
 representation of a bigint, and which do not"

•  You may have to decide on memory-management (malloc/free)
 protocols … "

•  The “dc” utility on Unix can be really useful in checking answers during
 debugging; do “man dc” at the shell prompt, or google “dc man page”"
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