Number Systems
Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0

- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters (‘a’, ‘z’, ...)
 - Pixels, sounds
 - Internet addresses

- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
Base 10 and Base 2

- **Decimal (base 10)**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)

- **Binary (base 2)**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22\)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

\[
\begin{align*}
12 / 2 &= 6 \quad R = 0 \\
6 / 2 &= 3 \quad R = 0 \\
3 / 2 &= 1 \quad R = 1 \\
1 / 2 &= 0 \quad R = 1 \\
\end{align*}
\]

Result = 1100
Writing Bits is Tedious for People

• Octal (base 8)
 • Digits 0, 1, …, 7

• Hexadecimal (base 16)
 • Digits 0, 1, …, 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 = 0</td>
<td>0000 = 0</td>
</tr>
<tr>
<td>0001 = 1</td>
<td>0001 = 1</td>
</tr>
<tr>
<td>0010 = 2</td>
<td>0010 = 2</td>
</tr>
<tr>
<td>0011 = 3</td>
<td>0011 = 3</td>
</tr>
<tr>
<td>0100 = 4</td>
<td>0100 = 4</td>
</tr>
<tr>
<td>0101 = 5</td>
<td>0101 = 5</td>
</tr>
<tr>
<td>0110 = 6</td>
<td>0110 = 6</td>
</tr>
<tr>
<td>0111 = 7</td>
<td>0111 = 7</td>
</tr>
<tr>
<td>1000 = 8</td>
<td>1000 = 8</td>
</tr>
<tr>
<td>1001 = 9</td>
<td>1001 = 9</td>
</tr>
<tr>
<td>1010 = A</td>
<td>1010 = A</td>
</tr>
<tr>
<td>1011 = B</td>
<td>1011 = B</td>
</tr>
<tr>
<td>1100 = C</td>
<td>1100 = C</td>
</tr>
<tr>
<td>1101 = D</td>
<td>1101 = D</td>
</tr>
<tr>
<td>1110 = E</td>
<td>1110 = E</td>
</tr>
<tr>
<td>1111 = F</td>
<td>1111 = F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9
Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue

- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- In HTML, e.g. course “Schedule” Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period

- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue
Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)

- Unsigned integer
 - No sign bit
 - Always 0 or a positive number

- Examples of unsigned integers
 - 00000001 \(\rightarrow\) 1
 - 00001111 \(\rightarrow\) 15
 - 00100001 \(\rightarrow\) 33
 - 11111111 \(\rightarrow\) 255 (\(2^8 - 1\))

- All arithmetic is modulo \(2^n\)

- Signed integers, negative numbers: soon
Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>Sum</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Carry</td>
<td>Carry</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR

(“exclusive OR”)

AND

\[
\begin{array}{ccc}
0100 & 0101 & 69 \\
+ 0110 & 0111 & 103 \\
\hline
1010 & 1100 & 172
\end{array}
\]
Modulo Arithmetic

• Consider only numbers in a range
 • E.g., five-digit car odometer: 0, 1, …, 99999
 • E.g., eight-bit numbers 0, 1, …, 255

• Roll-over when you run out of space
 • E.g., car odometer goes from 99999 to 0, 1, …
 • E.g., eight-bit number goes from 255 to 0, 1, …

• Adding 2^n doesn’t change the answer
 • For eight-bit number, n=8 and $2^n=256$
 • E.g., $(37 + 256) \mod 256$ is simply 37

• This can help us do subtraction
 • Turn subtraction into addition: $a - b$ into $a + x$
 • Let x be easily computable from b
 • Use properties of modulo arithmetic and number complements
Subtraction made easy

• Turn subtraction into addition
 • Suppose you want to compute $a - b$, in eight-bit representation
 • This equals $(a - b) + 256$ (modulo arithmetic)
 • This equals $a + (256 - b)$ [generally, $a + (2^n - b)$]
 • This equals $a + (256 - 1 - b) + 1$ [a + (2^n -1 - b) + 1]

• $2^n - 1 - b$ is easy to compute
 • $2^n - 1$ is all 1s: 1111 1111 for 2^8 (256 – 1)
 • So $(2^n - 1) – b$ is just b with all the bits flipped
 • This is called the one’s complement of b

• Therefore $(2^n -1 - b) + 1$ is also easy to compute (just add 1)
 • This is called the two’s complement of b

• The rest is just an addition with a
One’s and Two’s Complement

- Example: 172 – 69 (in eight bit arithmetic)
 - 172 + (2^8 – 1 – 69) + 1

- Compute the one’s complement of b (here b = 69)
 - That’s simply 255 – 69

 \[
 \begin{array}{cccc}
 1 & 1 & 1 & 1 \\
 - & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \hline
 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
 \end{array}
 \]

 - Flip every bit of 69 to get the one’s complement (2^8 – 1 – 69)

- Compute the two’s complement of b
 - Add 1 to the one’s complement
 - E.g., (255 – 69) + 1 \(\rightarrow\) 1011 1011
Putting it All Together

• Computing “a – b”
 • a + (\(2^n - 1 - b\) + 1
 • Same as “a + twosComplement(b)”
 • Same as “a + onesComplement(b) + 1”

• Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1010
 • Two’s complement of 69: 1011 1011
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: 103 in decimal

\[
\begin{array}{c}
1010 1100 \\
+ 1011 1011 \\
\hline
10110 0111
\end{array}
\]
Signed Integers

• **Sign-magnitude representation**
 • Use one bit to store the sign
 • Zero for positive number
 • One for negative number
 • Examples
 • E.g., 0010 1100 ➞ 44
 • E.g., 1010 1100 ➞ -44
 • Hard to do arithmetic this way, so it is rarely used

• **Complement representation**
 • -b can be represented as the One’s complement of b
 • Flip every bit
 • E.g., 1101 0011 ➞ -44
 • -b can be represented as the Two’s complement of b
 • Flip every bit, then add 1
 • E.g., 1101 0100 ➞ -44
Overflow: Running Out of Room

• Adding two large integers together
 • Sum might be too large to store in the number of bits available
 • What happens?

• Unsigned integers
 • All arithmetic is “modulo” arithmetic
 • Sum would just wrap around

• Signed integers
 • Can get nonsense values
 • Example with 16-bit integers
 • Sum: 10000+20000+30000
 • Result: -5536
Bitwise Operators: AND and OR

- Bitwise AND (&)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Mod on the cheap!

 - E.g., 53 % 16

 - … is same as 53 & 15;

- Bitwise OR (|)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- E.g., 53 % 16

 - … is same as 53 & 15;

53: \[0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\]

& 15: \[0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\]

\[\text{Result: } 0\ 0\ 0\ 0\ 1\ 0\ 1\]
Bitwise Operators

• One’s complement (~)
 • Turns 0 to 1, and 1 to 0
 • E.g., set last three bits to 0
 • \(x = x \& \sim 7; \)

• XOR (^)
 • 0 if both bits are the same
 • 1 if the two bits are different

\[
\begin{array}{c|cc}
 ^ & 0 & 1 \\
 \hline
 0 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

• AND (&)

\[
\begin{array}{c|cc}
 & 0 & 1 \\
 \hline
 0 & 0 & 0 \\
 1 & 0 & 1 \\
\end{array}
\]

• OR (|)

\[
\begin{array}{c|cc}
 | & 0 & 1 \\
 \hline
 0 & 0 & 1 \\
 1 & 1 & 1 \\
\end{array}
\]

Bitwise Operators: Shift Left/Right

- **Shift left (<<):** Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0

 53 \[\begin{array}{cccccccc}
 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
 \end{array} \]

 53 << 2 \[\begin{array}{cccccccc}
 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 \end{array} \]

- **Shift right (>>):** Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another

 53 \[\begin{array}{cccccccc}
 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
 \end{array} \]

 53 >> 2 \[\begin{array}{cccccccc}
 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
 \end{array} \]
Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

 0 0 1 1 0 1 0 1

 - Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - Look at the last bit: n & 1
 - All bits but the last in 1 are zeros, so this n & 1 is either 0 or 1
 - Check if it is a 1: (n & 1) == 1, or simply (n & 1)
#include <stdio.h>
#include <stdlib.h>
int main(void) {
 unsigned int n;
 unsigned int count;
 printf("Number: ");
 if (scanf("%u", &n) != 1) {
 fprintf(stderr, "Error: Expect unsigned int.\n");
 exit(EXIT_FAILURE);
 }
 for (count = 0; n > 0; n >>= 1)
 count += (n & 1);
 printf("Number of 1 bits: %u\n", count);
 return 0;
}
Summary

• Computer represents everything in binary
 • Integers, floating-point numbers, characters, addresses, …
 • Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
 • Sum (XOR) and Carry (AND)
 • Two’s complement for subtraction

• Bitwise operators
 • AND, OR, NOT, and XOR
 • Shift left and shift right
 • Useful for efficient and concise code, though sometimes cryptic