

Let's build a computer!

CPU: "central processing unit"

computer: CPU + display + optical disk + metal case + power supply + ...

Last lecture: circuit that implements an adder

This lecture: circuit that implements a CPU

TOY Lite

TOY machine.

- 256 16-bit words of memory.
- 16 16-bit registers.
- 1 8-bit program counter.
- 2 instruction types
- 16 instructions.

TOY-Lite machine.

- 16 10-bit words of memory.
- 4 10-bit registers.
- 1 4-bit program counter.
- 2 instruction types
- 16 instructions.

Goal: CPU circuit for TOY-Lite (same design extends to TOY, your computer)

Primary Components of Toy-Lite CPU

✓ Arithmetic and Logic Unit (ALU)

Memory

Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

"Control"

A New Ingredient: Circuits With Memory

Combinational circuits.

- Output determined solely by inputs.
- Ex: majority, adder, decoder, MUX, ALU.

Sequential circuits.

- Output determined by inputs and current "state".
- Ex: memory, program counter, CPU.
- Ex. Simplest feedback loop.
- Two controlled switches A and B, both connected to power, each blocked by the other.
- State determined by whichever switches first.
- Stable.

Aside. Feedback with an odd number of switches is a buzzer (not stable). Doorbell: buzzer made with relays.

SR Flip-Flop

SR Flip-flop.

- Two cross-coupled NOR gates
- A way to control the feedback loop.
- Abstraction that "remembers" one bit.
- Basic building block for memory and registers.

x y

OR gate

OR

0

Caveats. Timing, switching delay.

0

Memory Overview

Computers and TOY have several memory components.

- Program counter and other processor registers.
- TOY registers (4 10-bit words in Toy-Lite).
- Main memory (16 10-bit words in Toy-Lite).

Implementation.

- Use one flip-flop for each bit of memory.
- Use buses and multiplexers to group bits into words.

Access mechanism: when are contents available?

- Processor registers: enable write.
- Main memory: select and enable write.
- TOY register: dual select and enable write

Processor register bit. Extend a flip-flop to allow easy access to values.

Memory Bit Interface

Memory and TOY register bits: Add selection mechanism.

Memory Bit: Switch Level Implementation

Memory and TOY register bits: Add selection mechanism.

Processor Register

Processor register. \leftarrow don't confuse with TOY register

- Stores k bits.
- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY-Lite program counter (PC) holds 4-bit address.
- Ex 2. TOY-Lite instruction register (IR) holds 10-bit current instruction.

Processor Register

Processor register. — don't confuse with TOY register

- Stores k bits.
- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY program counter (PC) holds 8-bit address.
- Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

Processor Register

Processor register. — don't confuse with TOY register

- Stores k bits.
- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY program counter (PC) holds 8-bit address.
- Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

Memory Bank

Memory bank.

- Bank of n registers; each stores k bits.
- Read and write information to one of n registers.
- Address inputs specify which one. _____ log_2n address bits needed
- Addressed bits always appear on output.
- If write enabled, k input bits are copied into addressed register.

Memory: Interface

Memory: Component Level Implementation

Decoder plus memory selection: connect only to addressed word.

Memory: Switch Level Implementation

TOY-Lite Memory

16 10-bit words

- input connected to registers for "store"
- output connected to registers for "load"
- addr connect to processor Instruction Register (IR)

to registers (out)

	k 4	4		j.		l lu		Iy	14	j.	14	i iy	14		
4 <u>5</u>															
IIII	*****	燕나려				क्रम्द्र	新城적			<u>क्र</u> म्ये					
	천 꼬나 찬	游관	游관	游관	游과천	游관		游내神	游규추		滿고주천	游관	游규추	海과천	<u>क्रम</u> क
	철학교철	क्रम्द्र	क्रम्द्र	堂년철	猫城	क्रम्द्र	教理な	遊せな	猫哇	あせな	游년	游년석	猫哇	猫哇	菊叶绿
「茶」は	천 빛내 천	猫哇	游내려	猫哇	猫哇萨	滿고(천	猫哇萨	猫哇萨	猫哇科	教社会	猫哇	菊堆茶	滿급	菊堆落	あれな
	철찾규수천	滿며현	游년천	滿고	滿급	क्रीम्टे	滿고	滿고	猫哇	滿나촌	滿고	滿고	क्रीन्ट्र	茶卉を	
對山	철학교관	滿고	游내さ	猫哇	猫哇	क्रीमंटे	猫哇	猫哇	猫哇	満せる	滿고	茶卉を	猫哇	猫哇萨	
對山	참꼬규찬	滿고	游년천	滿고주	滿고	游년천	滿고	猫哇	描내려	游년천	滿고	茶卉な	滿급	猫哇	
	철학교철	教理な	游년천	猫哇	猫哇	游년천	菊堆落	菊草	満せる	菊枝	満せる	教理な	満せる	教理な	
- <u>*</u>	철학교관	游년천	游년천	游년천	游관	禁년천	禁년천	菊草	क्रीम्द्र	游년천	禁止	教理な	क्रीम्ट्र	教理な	教理な
मिक	철학교철	満せな	塑理等	教理な	क <u>्र</u> म्ये	क्रमंत्र	教理な	क्रम्ये	क्रम्ये	क्रम्ये	教理な	游내려	क्रम्ये	游년천	教理な

to registers (in)

to IR •

Another Useful Combinational Circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.

Nuts and Bolts: Buses and Multiplexers

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.

Toy-Lite Registers

4 10-bit words

- Dual-ported to support connecting two different registers to ALU
- Input MUX to support input connection to ALU, memory, IR, PC

Primary Components of Toy-Lite CPU

✓ ALU

Memory

✓ Registers

Processor Registers: Program Counter and Instruction Register

Not quite done. Need to be able to increment.

"Control"

How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Goal. Design TOY-Lite computer (10 devices, 27 control wires).

Program Counter: Interface

Counter. Holds value that represents a binary number.

- Load: set value from input bus.
- Increment: add one to value.
- Enable Write: make value available on output bus.

Ex. TOY-Lite program counter (4-bit).

Program Counter: Components

Components.

- Register.
- Incrementer.
- Multiplexer (to provide connections for both load and increment).

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

Primary Components of Toy-Lite CPU

🗸 ALU

✓ Memory

✓ Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

"Control"

How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Next. Design TOY-Lite computer (10 devices, 27 control wires).

TOY-Lite: Interface

CPU is a circuit.

Interface: switches and lights.

- set memory contents
- set PC value
- press RUN
- [details of connection to circuit omitted]

TOY-Lite: Components

TOY-Lite: Layout

TOY-Lite Datapath Requirements: Fetch

Basic machine operation is a cycle.

- Fetch
- Execute

Fetch.

- Memory[PC] to IR
- Increment PC

Execute.

• Datapath depends on instruction

TOY-Lite Datapath Requirements: Execute

Instructions determine datapaths and control sequences for execute

		•••
0	halt	
1	add	
2	subtract	IR opcode to control
3	and	control to ALU
4	xor	two registers to ALU
5	shift left	ALU to register MUX
6	shift right	
7	load address	
8	load	
9	store	
A	load indirect	
В	store indirect	
С	branch zero	
D	branch positive	
E	jump register	•••
F	jump and link	

TOY-Lite: Datapaths and Control

Datapath: Add

fetch:

Memory[PC] to IR

increment PC

execute:

IR opcode to control control to ALU two registers to ALU ALU to register MUX

Datapath: Load

execute:

IR opcode to control IR to addr MUX memory to register MUX

increment increment PC

ONI

Last step

Control. Each instruction corresponds to a sequence of control signals.

- Q. How do we create the sequence?
- A. Need a "physical" clock.

Solution 2: Use a buzzer [need sufficiently long cycle to cover CPU switching]

Clock

Clock.

- Fundamental abstraction: regular on-off pulse.
 - -on: fetch phase
 - -off: execute phase
- "external" device.
- Synchronizes operations of different circuit elements.
- Requirement: clock cycle longer than max switching time.

Execute

Solution 3?

Fetch

How much does it Hert?

Frequency is inverse of cycle time.

- Expressed in hertz.
- [•] Frequency of 1 Hz means that there is 1 cycle per second.
 - -1 kilohertz (kHz) means 1000 cycles/sec.
 - -1 megahertz (MHz) means 1 million cycles/sec.
 - -1 gigahertz (GHz) means 1 billion cycles/sec.
 - -1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz (1857-1894)

Clocking Methodology

Two-cycle design.

- Each control signal is in one of four epochs.
 - -fetch
 - fetch and clock
 - execute
 - execute and clock

[set memory address from pc]

[write instruction to IR]

[set ALU inputs from registers]

[write result of ALU to registers]

One Last Combinational Circuit: Control

Control. Circuit that determines control line sequencing.

Tick-Tock

CPU is a circuit, driven by a clock.

Switches initialize memory, PC contents

Clock ticks

- fetch instruction from memory[PC] to IR
- increment PC
- execute instruction

[details of instruction execution differ]

- fetch next instruction
- ...

That's all there is to it!

TOY "Classic", Back Of Envelope Design

TOY-Lite CPU

MAIN MEMORY (16 10-BIT WORDS)

MAIN MEMORY (10 10-BIT WORDS)		
	PC INPUT MUX	
<u>الج الج الج الح الح الح الح الح الح ا</u>		

REGISTER INPUT MUX

Real Microprocessor (MIPS R10000)

Layers of Abstraction

Abstraction	Built From	Examples
Abstract Switch	raw materials	transistor, relay
Connector	raw materials	wire
Clock	raw materials	crystal oscillator
Logic Gates	abstract switches, connectors	AND, OR, NOT
Combinational Circuit	logic gates, connectors	decoder, multiplexer, adder
Sequential Circuit	logic gates, clock, connector	flip-flop
Components	decoder, multiplexer, adder, flip-flop	registers, ALU, counter, control
Computer	components	ТОУ

History + Future

Computer constructed by layering abstractions.

- Better implementation at low levels improves everything.
- Ongoing search for better abstract switch!

History.

- 1820s: mechanical switches.
- 1940s: relays, vacuum tubes.
- 1950s: transistor, core memory.
- 1960s: integrated circuit.
- 1970s: microprocessor.
- 1980s: VLSI.
- 1990s: integrated systems.
- 2000s: web computer.
- Future: quantum, optical soliton, ...

