

Building Blocks

Combinational Circuits

Q. What is a combinational circuit?
A. Digital: signals are 0 or 1 . \qquad analog circuits: signals vary continuously
A. No feedback: no loops. \qquad sequential circuits: loops allowed (stay tuned)
Q. Why combinational circuits?
A. Accurate, reliable, general purpose, fast, cheap.

Basic abstractions.

- On, off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Applications. Cell phone, iPod, antilock brakes, microprocessors, ...

Wires

Wires.

- ON (1): connected to power.
- OFF (0): not connected to power.
- If a wire is connected to a wire that is on, that wire is also on.
- Typical drawing convention: "flow" from top, left to bottom, right.

Controlled switch.

- 3 connections: input, output, control.

Controlled Switch

Controlled switch.

- 3 connections: input, output, control.
- control ON: output is disconnected from input

Controlled switch.

- 3 connections: input, output, control.
- control OFF: output is connected to input

Controlled Switch

Controlled switch

- 3 connections: input, output, control.
- control OFF: output is connected to input
- control ON: output is disconnected from input

idealized model of "pass transistors" found in real integrated circuits

Relay implementation.

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.

Anatomy of a relay (controlled switch)

Controlled Switches: A First Level of Abstraction

Some amusing attempts to prove the point:

Technology	"Information"	Switch
pneumatic	air pressure	
fluid	water pressure	
relay	electric potential	

Separates physical world from logical world.

- we assume that switches operate as specified
- that is the only assumption
- physical realization of switch is irrelevant to design

Physical realization dictates performance

- size
- speed
- power

New technology immediately gives new computer.

Better switch? Better computer.

Controlled Switches: A First Level of Abstraction

Real-world examples that prove the point:

technology	switch
relay	
vacuum tube	
transistor	
"pass transistor" in	
integrated circuit	

VLSI = Very Large Scale Integration

Technology:

Deposit materials on substrate.

Key property:

Crossing lines are controlled switches.
Key challenge in physical world: Fabricating physical circuits with billions of controlled switches

Key challenge in "abstract" world: Understanding behavior of circuits with billions of controlled switches

Bottom line: Circuit = Drawing (!)

Second Level of Abstraction: Logic Gates
NOT $=x^{\prime}$

x	NOT
0	1
1	0

$$
x-\underbrace{>0-x^{\prime}}_{\text {symbol }}
$$

$O R=x+y$

$x y$	$O R$	
0	0	0
0	1	1
1	0	1
1	1	1

AND $=x y$

need more "levels of abstraction" to understand circuit behavior

Second Level of Abstraction: Logic Gates

NOT $=x^{\prime}$

$O R=x+y$

$x y$	$O R$	
0	0	0
0	1	1
1	0	1
1	1	1

AND $=x y$

implementations with switches

Multiway gates.

- OR: 1 if any input is $1 ; 0$ otherwise.
- AND: 1 if all inputs are 1; 0 otherwise.
- Generalized: negate some inputs.

Building blocks (summary)

Multiway gates.

- OR: 1 if any input is $1 ; 0$ otherwise.
- AND: 1 if all inputs are 1;0 otherwise
- Generalized: negate some inputs.

Wires
Boolean Algebra

Controlled switches

Gates

Generalized multiway gates

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).
"possibly the most important, and also the most famous, master's thesis of the [20th] century" - Howard Gardner

Boolean algebra.

- Boolean variable: value is 0 or 1 .

- Boolean function: function whose inputs and outputs are 0,1.

Relationship to circuits.

- Boolean variable: signal.
- Boolean function: circuit.

Copyright 2004, Sidney Harris
http://www. sciencecartoonsplus .com

Truth Table for Functions of 2 Variables

Truth table.

- 16 Boolean functions of 2 variables.
\longleftarrow every 4-bit value represents one

x	y	ZERO	AND		x		y	XOR	$O R$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

truth table for all Boolean functions of 2 variables

x	y	$N O R$	$E Q$	y^{\prime}		x^{\prime}		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

truth table for all Boolean functions of 2 variables

\times NOR y

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- n inputs $\Rightarrow 2^{n}$ rows.

AND truth table

${ }^{22}$

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
- 256 Boolean functions of 3 variables.
- $2^{\wedge}\left(2^{\wedge} n\right)$ Boolean functions of n variables!
\longleftarrow every 4-bit value represents one
\longleftarrow every 8-bit value represents one
\longleftarrow every 2^{n}-bit value represents one

x	y	z	$A N D$	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

some functions of 3 variables.

Fact. Any Boolean function can be expressed using AND, OR, NOT.

- \{ AND, OR, NOT $\}$ are universal.
- Ex: $\operatorname{XOR}(x, y)=x y^{\prime}+x^{\prime} y$.

notation	meaning
x^{\prime}	NOT x
$x y$	x AND y
$x+y$	x OR y

Expressing XOR Using AND, OR, NOT

x	y	x^{\prime}	y^{\prime}	$x^{\prime} y$	$x y^{\prime}$	$x^{\prime} y+x y^{\prime}$	x XOR y
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Exercise. Show $\{A N D, N O T\}$ are universal. (Hint: DeMorgan's law: $\left(x^{\prime} y^{\prime}\right)^{\prime}=x+y$.)

Exercise. Show $\{N O R\}$ is universal. (Stay tuned for easy proof)

Translate Boolean Formula to Boolean Circuit

Sum-of-products. XOR.

$X O R=x ' y+x y^{\prime}$

$$
\begin{array}{cc|c}
x & y & X O R \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

Truth tab7e

Circuit

Translate Boolean Formula to Boolean Circuit

Sum-of-products. XOR.
Key transformation from abstract to real circuit

$$
X O R=x^{\prime} y+x y^{\prime}
$$

Truth table

Circuit

Example 1. XOR.
Key transformation from abstract to real circuit

$X O R=x^{\prime} y+x y^{\prime}$

Circuit

Example 2. Majority.

MAJ $=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$

x	y	z	MAJ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table

Circuit

Translate Boolean Formula to Boolean Circuit

Example 2. Majority

MAJ = $x ' y z+x y^{\prime} z+x y z '+x y z$

Truth table

Circuit

Translate Boolean Formula to Boolean Circuit

Example 2. Majority.

MAJ $=x ' y z+x y^{\prime} z+x y z^{\prime}+x y z$

Example 2. Majority

MAJ $=x{ }^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$

Truth table
Abstract circuit

Combinational Circuit Design: Summary

Problem: Compute the value of a boolean function

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions

- Step 1: represent input and output signals with Boolean variables
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

Bottom line (profound idea):

It is easy to design a circuit to compute ANY boolean function.

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
- number of switches (space)
- depth of circuit (time)

Ex. $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z=x y+y z+x z$.

size $=10$, depth $=2$

size $=7$, depth $=2$

Translate Boolean Formula to Boolean Circuit

Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.

	\downarrow	\downarrow						
x	y	z	$O D D$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z^{\prime}$	$x y^{\prime} z^{\prime}$	$x y z$	$x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Expressing ODD using sum-of-products

Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.

${ }^{37}$

Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.

${ }^{38}$

Adder Circuit
\qquad

Goal. $x+y=z$ for 4-bit integers.
Step 2. [first attempt]

- Build truth table.

$C_{\text {out }}$				$c_{\text {in }}$
+	\mathbf{x}_{3}	\mathbf{x}_{2}	\mathbf{x}_{1}	\mathbf{x}_{0}
+	y_{3}	y_{2}	y_{1}	y_{0}
	z_{3}	z_{2}	z_{1}	z_{0}

4-bit adder truth table

Q. Why is this a bad idea?
A. 128-bit adder: 2^{256+1} rows >> \# electrons in universe!

Let's Make an Adder Circuit

Goal. $x+y=z$ for 4-bit integers.

Step 3. A surprise!

- carry bit is majority function
- summand bit is odd parity function.
carry bit

x_{i}	y_{i}	c_{i}	c_{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

summand bit

x_{i}	y_{i}	c_{i}	z_{i}	$O D D$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

carry bit

x_{i}	y_{i}	c_{i}	c_{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$\mathrm{c}_{\text {out }}$	C_{3}	C_{2}	C_{1}	$\mathrm{c}_{0}=$
	x_{3}	x_{2}	x_{1}	\mathbf{x}_{0}
+	Y_{3}	Y_{2}	Y_{1}	Y_{0}
	z_{3}	z_{2}	z_{1}	z_{0}

summand bit

x_{i}	y_{i}	c_{i}	z_{i}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Goal. $x+y=z$ for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit (use known components!)
- Chain together 1-bit adders.
- That's it!

Adder: Interface

A bus is a group of wires that connect (carry data values) to other components.

Adder: Switch Level View

Adder: Component Level View

Useful Combinational Circuits

3-bit Decoder

Decoder. [n-bit]

- n address inputs, 2^{n} data outputs.
- Addressed output bit is 1; others are 0.
- Compact implementation of n Boolean functions

\mathbf{x}_{0}	\mathbf{x}_{1}	\mathbf{x}_{2}	z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder. [n-bit]

- n address inputs, 2^{n} data outputs.
- Addressed output bit is 1; others are 0.
- Compact implementation of n Boolean functions

\mathbf{x}_{0}	\mathbf{x}_{1}	\mathbf{x}_{2}	z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

110

3-bit Decoder

Decoder application: Your computer's ALU!

ALU: Arithmetic and Logic Unit

- implements instructions
- input, output connects to registers via buses

Ex: TOY-Lite (10 bit words)
1: add
2: subtract
3: and
4: xor
5: shift left
6: shift right
Details:

- All circuits compute their result
- Decoder lines AND all results.
- "one-hot" OR collects answer

Summary

Lessons for software design apply to hardware design!

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!

- On/off.
- Controlled switch. [relay, transistor]
- Gates. [AND, OR, NOT]
- Boolean circuit. [MAJ, ODD]
- Adder.
- Shifter.
- Arithmetic logic unit.
- TOY machine (stay tuned)
- Your computer.
$\frac{1}{4}$

