

Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like $2+2=5$.
Decidable. Algorithm exists to determine truth of every statement.
Q. [Hilbert, 1900] Is mathematics complete and consistent?
A. [Gödel's Incompleteness Theorem, 1931] No!!!
Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] No!

Universality and Computability

Fundamental questions:
Q. What is a general-purpose computer?
Q. Are there limits on the power of digital computers?
Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

- Princeton $==$ center of universe.
- Automata, languages, computability, universality, complexity, logic

7.4 Turing Machines

Alan Turing (1912-1954)

Desiderata. Simple model of computation that is "as powerful" as conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.

This lecture: Turing machine

Tape.

- Stores input, output, and intermediate results.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

- Points to one cell of tape
- Reads a symbol from active cell.
- Writes a symbol to active cell.
- Moves left or right one cell at a time.

tape head
\downarrow

Tape

- Stores input.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

- Points to one cell of tape.
- Reads a symbol from active cell.
- Moves right one cell at a time.

tape
\square
ape head
\downarrow

Last lecture: Deterministic Finite State Automaton (DFA)

Simple machine with N states.

- Begin in start state.
- Read first input symbol.
- Move to new state, depending on current state and input symbol.
- Repeat until last input symbol read.
- Accept input string if last state is labeled Y

Input | b | b | a | a | b | b | a | b | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Simple machine with N states.

- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled Y, N, or H .
- Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

TM

Input

TM Example
TM Example

Simple machine with N state

- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labeled H .
- Accept input string state is labeled Y , reject if N
[or leave result of computation on tape].

Output

TM

Input
Output

$\#$	$\#$	1	0	1	1	1	0	1
$\#$	$\#$	1	0	1	1	1	1	0

Turing Machine: Initialization and Termination

Initialization. Set input on some portion of tape; set tape head.
tape

Termination. Stop if enter yes, no, or halt state.
Note: infinite loop possible
Output. Contents of tape.

TM Example 2: Binary Counter

TM Example 3: Binary Decrement

TM Example 3: Binary Decrement

Q. What happens if we try to decrement 0 ?

TM Example 4: Binary Adder

Ex. Use simulator to understand how this TM works.

7.5 Universality

Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way).
Ex 1. A compiler is a program that takes a program in one language as input and outputs a program in another language.
machine language

Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs $M(x)$.

TM intuition. Software program that solves one particular problem.

Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way).
Ex 2. A simulator is a program that takes a program for one machine as input and simulates the operation of that program.

22

Turing machine M. Given input tape x, Turing machine M outputs $M(x)$.

Universal Turing machine U. Given input tape with x and M, universal Turing machine U outputs $M(x)$.

TM intuition. Software program that solves one particular problem. UTM intuition. Hardware platform that can implement any algorithm.

Consequences. Your laptop (a UTM) can do any computational task

- Java programming.

$$
1
$$

- Pictures, music, movies, games.
- Email, browsing, downloading files, telephony
- Word-processing, finance, scientific computing
- ..

> Wenger Giant Swiss Army Knif

Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement about the physical world and not subject to proof.

Use simulation to prove models equivalent.

- TOY simulator in Java
- Java compiler in TOY.

Implications.

- No need to seek more powerful machines or languages.
- Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

Consequences. Your laptop (a UTM) can do any computational task.

- Java programming.

> even tasks not yet contemplated when laptop was purchased

Email, browsing, downloading files, telephony.

- Word-processing, finance, scientific computing
- ...
" Again, it [the Analytical Engine] might act upon other things besides numbers... the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent. " - Ada Lovelace

Church-Turing Thesis: Evidence

Evidence.
 "universal"

- 7 decades without a counterexample

\downarrow

- Many, many models of computation that turned out to be equivalent.

| model of computation | description |
| :---: | :---: | :---: |
| enhanced Turing machines | multiple heads, multiple tapes, 2D tape, nondeterminism |
| untyped lambda calculus | method to define and manipulate functions |
| recursive functions | functions dealing with computation on integers |
| unrestricted grammars | iterative string replacement rules used by linguists |
| extended L-systems | parallel string replacement rules that model plant growth |
| programming languages | Java, $C, C+$, Perl, Python, PHP, Lisp, PostScript, Excel |
| random access machines | registers plus main memory, e.g., Toy, Pentium |
| cellular automata | cells which change state based on local interactions |
| quantum computer | compute using superposition of quantum states |
| DNA computer | compute using biological operations on DNA |

ttp ://astronomy. swin. edu. au//pbourke/model1 ing/P1ants

Reference: Generating textures on arbitrary surfaces using reaction-diffusion by Greg Turk, SIGGRAPH, 1991 History: The chemical basis of morphogenesis by Alan Turing, 1952.

A Puzzle: Post's Correspondence Problem

7.6 Computability

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 1:

BAB	A	AB	BA
A	ABA	B	B
0	1	2	3

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

Given a set of cards

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string

Example 1:

BAB	A	AB	BA	$\mathrm{N}=4$
A	ABA	B	B	
0	1	2	3	

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

Solution 1.
Yes.

A	BA	BAB	AB	A
ABA	B	A	B	ABA
1	3	0	2	1

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 2:

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

Solution 2.
No. First card in solution must contain same letter in leftmost position

Given a set of cards

- N card types (can use as many copies of each type as needed)
- Each card has a top string and bottom string.

Example 2:

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed)
- Each card has a top string and bottom string.

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

Challenge

- Write a program to take cards as input and solve the puzzle.

Given a set of cards

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string

Puzzle:

- Is it possible to arrange cards so that top and bottom strings match?

Challenge:

- Write a program to take cards as input and solve the puzzle.

Surprising fact:

- It is NOT POSSIBLE to write such a program!

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.
and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable

Proof intuition: lying paradox.

- Divide all statements into two categories: truths and lies
- How do we classify the statement: "I am lying".

Key element of lying paradox and halting proof: self-reference.

Halting problem. Write a Java function that reads in a Java function f and its input \mathbf{x}, and decides whether $\mathbf{f}(\mathbf{x})$ results in an infinite loop.

Easy for some functions, not so easy for others

Ex. Does $f(x)$ terminate?

```
public void f(int x)
    hile (x != 1)
    {
        if (x & 2 = 0) }x=x/
        else(x%2 == 0) x = 3*x + 1
    }
```


Halting Problem Proof

Assume the existence of halt (\mathbf{f}, x)

- Input: a function f and its input x
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Note. halt (\mathbf{f}, \mathbf{x}) does not go into infinite loop.

We prove by contradiction that halt (\mathbf{f}, \mathbf{x}) does not exist.

- Reductio ad absurdum : if any logical argument based on an assumption leads to an absurd statement, then assumption is false

```
                                    encode f and x as strings
                                    l \
public boolean halt(String f, String x
{
    if ( something terribly clever) return true;
    else
                                    return false
}
```

Assume the existence of halt (f, x) :

- Input: a function f and its input \mathbf{x}.
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f, f) returns true, then strange (f) goes into an infinite loop.
- If halt (\mathbf{f}, f) returns false, then strange (f) halts.
\backslash
f is a string so it is legal (if perverse) to use it for second argument

```
public void strange(String f)
    if (halt(f, f))
    while (true) { } // an infinite loop
    }
}
```


Halting Problem Proof

Assume the existence of halt (\mathbf{f}, x) :

- Input: a function f and its input \mathbf{x}.
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f, f) returns true, then strange (f) goes into an infinite loop.
- If halt (f, f) returns false, then strange (f) halts.

In other words:

- If $\mathrm{f}(\mathrm{f})$ halts, then strange (f$)$ goes into an infinite loop.
- If $\mathrm{f}(\mathrm{f})$ does not halt, then strange (f) halts.

Call strange () with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Assume the existence of halt (f, x) :

- Input: a function f and its input x
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f,f) returns true, then strange (f) goes into an infinite loop
- If halt (f,f) returns false, then strange (f) halts.

In other words:

- If $f(f)$ halts, then strange (f) goes into an infinite loop.
- If $f(f)$ does not halt, then strange (f) halts.

Assume the existence of halt (\mathbf{f}, x) :

- Input: a function f and its input \mathbf{x}.
- Output: true if $\mathrm{f}(\mathrm{x})$ halts, and false otherwise.

Construct function strange (f) as follows:

- If halt (f,f) returns true, then strange (f) goes into an infinite loop.
- If halt (f,f) returns false, then strange (f) halts.

In other words:

- If $f(f)$ halts, then strange (f) goes into an infinite loop.
- If $f(f)$ does not halt, then strange (f) halts.

Call strange () with ITSELF as input

- If strange (strange) halts then strange (strange) does not halt
- If strange (strange) does not halt then strange (strange) halts

Either way, a contradiction. Hence halt (f,x) cannot exist.
Q. Why is debugging hard?
A. All problems below are undecidable

Halting problem. Give a function f, does it halt on a given input x ? Totality problem. Give a function f, does it halt on every input x ? No-input halting problem. Give a function f with no input, does it halt? Program equivalence. Do two functions f and always return same value? Uninitialized variables. Is the variable x initialized before it's used? Dead-code elimination. Does this statement ever get executed?

More Undecidable Problems

Hilbert's $10^{\text {th }}$ problem

- $f(x, y, z)=6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10 . \quad$ yes : $f(5,3,0)=0$.
- $f(x, y)=x^{2}+y^{2}-3$.
no.

Definite integration

Given a rational function $f(x)$ composed of polynomial and trig functions.
Does $\int_{-\infty}^{+\infty} f(x) d x$ exist?

- $g(x)=\cos x\left(1+x^{2}\right)^{-1}$
- $h(x)=\cos x\left(1-x^{2}\right)^{-1}$
yes, $\int_{-\infty}^{+\infty} g(x) d x=\pi / e$.
no, $\int_{-\infty}^{+\infty} h(x) d x$ undefined.

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given string or picture.

Mandelbrot set (40 lines of code)

Virus identification. Is this program a virus?

```
Private Sub Autoopen()
```



```
If System. PrivateProfilestring ("", CURRENT_USER\SOL
CommandBars ("Macro") . Contro1s ("Security ...").Enabled = False
```



```
    MreakUOffASlice.Recipients.Add Peep
    lol
Next oc
BreakUmoffAS1ice. Subject = "Important Message From "& Application.UserName
BreakUmoffASlice. Body ="Here is that document you asked for ... don't show anyone else ;-)"
Melissa viru
Melissa virus
```


Alan Turing

Alan Turing (1912-1954).

- Father of computer science.
- Computer science's "Nobel Prize" is called the Turing Award

It was not only a matter of abstract mathematics, not only a play of symbols, for it involved thinking about what people did in the physical world.... It was a play of imagination like that of Einstein or von Neumann, doubting the axioms rather than measuring effects.. What he had done was to combine such a naïve mechanistic picture of the mind with the precise logic of pure mathematics. His machines - soon to be called Turing machines - offered a bridge, a connection between abstract symbols, and the physical world. - John Hodges

Turing machine
Program and data
encode program and data as sequence of symbols
Universality.
concept of general-purpose, programmable computers
Church-Turing thesis.
computable at all $==$ computable with a Turing machine
Computability.
inherent limits to computation

Hailed as one of top 10 science papers of $20^{\text {th }}$ century.
Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.
In Proceedings of the London Mathematical Society, ser. 2. vol. 42 ($1936-7$) pp.230-265.

