
1

4.3 Stacks and Queues

3

Data Structures and Data Types

Data types
•Set of values.
• Set of operations on those values.
• Some are built in to Java: int, double, char, String, . . .
•Most are not: Complex, Picture, Charge, Stack, Queue, Graph, . . .

Data structures.
• Represent data.
• Represent relationships among data.
• Some are built in to Java: arrays, . . .
•Most are not: linked list, circular list, tree, sparse array, graph, . . .

Design challenge for every data type: What data structure to use?
• Requirement 1: Space usage.
• Requirement 2: Time usage for data-type methods

this lecture

this lecture TSP
(assignment 8)

next lecture

4

Collections

Fundamental data types.
• Set of operations (add, remove, test if empty) on generic data.
• Intent is clear when we insert.
•Which item do we remove?

Stack. (this lecture)
• Remove the item most recently added.
• Ex: cafeteria trays, Web surfing.

Queue. (see text)
• Remove the item least recently added.
• Ex: Registrar's line.

Symbol Table. (next lecture)
• Remove item with a given key.
• Ex: Phone book

FIFO = "first in first out"

LIFO = "last in first out"

5

FIFO Queues

6

FIFO Queue API

it

was

the

best

it

was

the

best

of

was

the

best

of

the

best

of

put get get

public class QueueOfStrings

QueueOfStrings() create an empty queue

int length() size of the queue

void put(String item) put a string onto the queue

String get() get a string from the queue

length
3

Queue Client Code Example: Read from input stream into an array

7

public class WhiteFilter
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words;
 // Fill words[] with strings from In (stay tuned).
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (search(key, words) != -1)
 StdOut.println(key);
 }
 }
}

from previous lecture

Solves basic problem
•Can’t store strings in array until it is created.
• Can’t create array without knowing how many strings in input stream.
• Can’t know how many strings in input stream without reading them all.
• Solution: keep them in a Queue

See text for implementation/applications (after learning about Stacks).

QueueOfStrings q = new QueueOfStrings();
while (!in.isEmpty())
 q.put(in.readString());
int N = q.length();
words = new String[N];
for (int i = 0; i < N; i++)
 words[i] = q.get();

8

Pushdown Stacks

9

Stack API

of

best

the

was

it

times

of

best

the

was

it

of

best

the

was

it

best

the

was

it

push pop pop

*: we will consider more than one implementation

Stack Client Example 1: Reverse

10

public class Reverse
{
 public static void main(String[] args)
 {
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 stack.push(StdIn.readString());
 while (!stack.isEmpty())
 StdOut.print(stack.pop());
 StdOut.println();
 }
}

% more tiny.txt
it was the best of times

% java Reverse tiny.txt
times of best the was ittimes

of

best

the

was

it

stack contents when
StdIn is empty

Stack Client Example 2: Test Client

11

public static void main(String[] args)
{
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.compareTo("-") != 0)
 stack.push(item);
 else
 System.out.print(stack.pop());
 }
 System.out.println();
}

% more test.txt
to be or not to - be - - that - - - is

% java StackOfStrings < test.txt
to be not that or be

to

not

or

be

to

stack contents just before first pop() operation

Stack Client Example 3: Balanced Parentheses

12

(((a + b) * d) + (e * f))
()
 () ()
 ()

push

push

push

push

pop

pop pop

pop

Stack Client Example 3: Balanced Parentheses

13

public class Balanced
{
 public static void main(String[] args)
 {
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (item.compareTo("(") == 0)
 stack.push(item);
 if (item.compareTo(")") == 0)
 {
 if (stack.isEmpty())
 { StdOut.println(“Not balanced”); return; }
 stack.pop();
 }
 }
 if (!stack.isEmpty()) StdOut.println(“Not balanced”);
 else StdOut.println(“Balanced”);
 }
}

% java Balanced
(((a + b) * d) + (e * f))
Balanced

% java Balanced
((a + b) * d) + (e * f))
Not balanced

14

Stack: Array Implementation

Array implementation of a stack.
•Use array a[] to store N items on stack.
• push() add new item at a[N].
• pop() remove item from a[N-1].

public class ArrayStackOfStrings
{
 private String[] a;
 private int N = 0;

 public ArrayStackOfStrings(int max)
 { a = new String[max]; }

 public boolean isEmpty()
 { return (N == 0); }

 public void push(String item)
 { a[N++] = item; }

 public String pop()
 { return a[--N]; }
}

not

or

be

to

stack contents after
4th push() operation

to be or not

N

a[0] a[1] a[2] a[3]

PROBLEM: How big to make array? (Stay tuned.)

Strawman solution: Make client provide capacity.
NOTE: This ‘solution’ violates the API!

pop

push

15

Array Stack: Trace

push

pop

TEQ on Stacks

Q. Can we always insert pop commands (-) to make strings come out sorted?

Ex 1: 6 5 4 3 2 1 - - - - -

Ex 2: 1 - 2 - 3 - 4 - 5 - 6 -

Ex 3: 4 1 - 3 2 - - - 6 5 - -

16

17

Array Stack: Performance

Running time. Push and pop take constant time. ✓

Memory. Proportional to client-supplied capacity, not number of items. ✗

Problem.
•Original API does not call for capacity (never good to change API)
• Client might have multiple stacks
• Client might not know what capacity to use (depends on its client)

Challenge. Stack implementation where space use is not fixed ahead of time.

Possible implementation of Java memory management system (sketch)

Maintain N stacks
• stack i: blocks of contiguous 2i byte chunks of memory
•new: pop from stack t, where 2t is smallest block that will hold new object
• stack t empty? pop from t+1, split in half, push 2 blocks on stack t
• garbage collector: periodically finds unused memory blocks

and pushes onto appropriate stack.

Properties
•many stacks
• stack size unpredictable

Stack implementation without capacity restriction (as in API) is a requirement

Example: potential stack client

18

2 4 8 16

. . .

How? See COS 226.

19

Linked Lists

20

Sequential vs. Linked Data Structures

Sequential data structure. Put object one next to another.
• TOY: consecutive memory cells.
• Java: array of objects.

Linked data structure. Include in each object a link to the another one.
• TOY: link is memory address of next object.
• Java: link is reference to next object.

Key distinctions.
•Array: arbitrary access, fixed size.
• Linked list: sequential access, variable size.

Linked structures.
•Not intuitive, overlooked by naive programmers
• Flexible, widely used method for organizing data

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

valueaddr

"Alice"

"Bob"

C0

C1

"Carol"

-

C2

C3

-

-

C4

C5

-

-

C6

C7

-

-

C8

C9

-

-

CA

CB

valueaddr

array linked list

get ith element

get next element

Singly-linked data structures

From the point of view of a particular object, all of these structures
look the same:

Multiply linked structures: many more possibilities!
21

Sequential list (this lecture)

Circular list (TSP)

General case

Rho

Tree

22

Linked list.
• Simplest linked structure.
•A recursive data structure.
•An item plus a pointer to another linked list (or empty list).
• Unwind recursion: linked list is a sequence of items.

Node data type.
•A reference to a String.
• A reference to another Node.

Linked Lists

public class Node
{
 private String item;
 private Node next;
}

Alice Bob Carol

first

item next

special pointer value null terminates list

Confusing point:
 Purpose of data structure is to represent data in a data type
 but, we also use data types to implement data structures
Example: The data type Node acts behind the scenes to implement
the linked list data structure. It is not visible to the client.

23

Building a Linked List

Node third = new Node();
third.item = "Carol";
third.next = null;

Node second = new Node();
second.item = "Bob";
second.next = third;

Node first = new Node();
first.item = "Alice";
first.next = second;

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

-

-

CC

CD

-

-

CE

CF

Valueaddr

Carol

item next

third

C0third

main memory

Bob

second

CAsecond

Alice

first

C4first

null

24

Traversing a List

Iteration. Idiom for traversing a null-terminated linked list.

Node x = first;
while (x != null)
{
 StdOut.println(x.item);
 x = x.next;
}

Alice Bob Carol

item next

first

for (Node x = first; x != null; x = x.next)
 StdOut.println(x.item);

shorthand version

StdOut

25

Stack Push: Linked List Implementation

second = first;

first.item = item;
first.next = second;

first = new Node();

best the was it

first

of

second

best the was it

first second

best the was it

first

second

best the was it

first

26

Stack Pop: Linked List Implementation

first = first.next;

return item;

best the was it

first

of

best the was it

first

best the was it

first

of

garbage-collected

item = first.item;

"of"

27

Stack: Linked List Implementation

public class LinkedStackOfStrings
{
 private Node first = null;

 private class Node
 {
 private String item;
 private Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

not

or

be

to

stack contents after
4th push() operation

in test client

first

not

or

be

to

Note difference between first and second:
 first: an instance variable that retains state
 second: a local variable that goes out of scope

28

Linked List Stack: Trace

push

pop

29

Linked-List Stack: Performance

Running time. Push and pop take constant time. ✓

Memory. Always proportional to number of items in stack. ✓

30

Stack Data Structures: Tradeoffs

Two data structures to implement the Stack data type.

Array.
• Every push/pop operation take constant time.
• But does not implement API… (must fix max capacity ahead of time).

Linked list.
• Every push/pop operation takes constant time.
• But… uses extra space and time to deal with references.

Client can evaluate performance tradeoffs to choose among APIs
 (implicitly choosing among underlying data structures)

TEQ on List Processing 1

What does the following code do?

31

...
Node list = null;
while (!StdIn.isEmpty())
{
 Node old = list;
 list = new Node();
 list.item = StdIn.readString();
 list.next = old;
}
for (Node t = list; t != null; t = t.next)
 StdOut.println(t.item);
...

TEQ on List Processing 2

What does the following code do?

32

...
Node list = new Node();
list.item = StdIn.readString();
Node last = list;
while (!StdIn.isEmpty())
{
 last.next = new Node();
 last = last.next;;
 last.item = StdIn.readString();
}
...

33

Parameterized Data Types

34

Parameterized Data Types

We implemented: StackOfStrings.

We also want: StackOfMemoryBlocks, StackOfURLs, StackOfInts, …

Strawman. Implement a separate stack class for each type.
• Rewriting code is tedious and error-prone.
•Maintaining cut-and-pasted code is tedious and error-prone.

35

Generics

Generics. Parameterize stack by a single type.

Stack<Apple> stack = new Stack<Apple>();
Apple a = new Apple();
Orange b = new Orange();
stack.push(a);
stack.push(b); // compile-time error
a = stack.pop();

parameterized type

sample client

“Stack of Apples”

Can’t push an “Orange”
onto a “Stack of Apples”

36

Generic Stack: Linked List Implementation

public class LinkedStackOfStrings
{
 private Node first = null;

 private class Node
 {
 private String item;
 private Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public String pop()
 {
 String item = first.item;
 first = first.next;
 return item;
 }
}

public class Stack<Item>
{
 private Node first = null;

 private class Node
 {
 private Item item;
 private Node next;
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public Item pop()
 {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

String stack (for reference)

parameterized
type name
chosen by

programmer

37

Autoboxing

Generic stack implementation.
• Cannot use primitives with parameterized data types
• Can only substitute a reference type name for a parameterized name.

Wrapper type.
• Each primitive type has a wrapper reference type.
• Ex: Integer is wrapper type for int.
•Wrapper type has larger set of operations than primitive type.
• Values of wrapper type are objects.

Autoboxing. Automatic cast from primitive type to wrapper type.
Autounboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
stack.push(17); // Autobox (int -> Integer)
int a = stack.pop(); // Auto-unbox (Integer -> int)

38

Stack Applications

Real world applications.
• Parsing in a compiler.
• Java virtual machine.
•Undo in a word processor.
• Back button in a Web browser.
• PostScript language for printers.
• Implementing function calls in a compiler.

39

Stack Client 4: Arithmetic Expression Evaluation

Goal. Evaluate infix expressions.

Two stack algorithm. [E. W. Dijkstra]
• Value: push onto the value stack.
•Operator: push onto the operator stack.
• Left parens: ignore.
• Right parens: pop operator and two values;

push the result of applying that operator
to those values onto the operand stack.

operand operator

value stack
operator stack

40

Arithmetic Expression Evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")"))
 {
 String op = ops.pop();
 if (op.equals("+"))
 vals.push(vals.pop() + vals.pop());
 else if (op.equals("*"))
 vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
} % java Evaluate

(1 + ((2 + 3) * (4 * 5)))
101.0

41

Correctness

Why correct? When algorithm encounters an operator surrounded by two
values within parentheses, it leaves the result on the value stack.

So it's as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity, whitespace.

1 + (2 - 3 - 4) * 5 * sqrt(6*6 + 7*7)

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))
(1 + 100)
101

42

Postfix

Observation 1. Remarkably, the 2-stack algorithm computes the same value
if the operator occurs after the two values.

Observation 2. Now all of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.

(1 ((2 3 +) (4 5 *) *) +)

1 2 3 + 4 5 * * +

Jan Lukasiewicz

Real-World Stack Application: PostScript

PostScript (Warnock-Geschke, 1980s). A turtle with a stack.
• postfix program code
• add commands to drive virtual graphics machine
• add loops, conditionals, functions, types

Simple virtual machine, but not a toy.
• Easy to specify published page.
• Easy to implement on various specific printers
• Revolutionized world of publishing.
• Virtually all printed material is PostScript.

43

1

5

20

 100 100 moveto
 100 300 lineto
 300 300 lineto
 300 100 lineto
 stroke draw the path

define a path

units are points
(72 per inch)

PostScript code

Context/Definitions/Summary

Interpreter.
• Takes a program as input
•Does what that program would do.
• Simulates a virtual machine.

Compiler.
• Takes a program as input
• Produces a program as output.
• Produces code for a (real) machine.

Data Type and Virtual Machine are the same thing!
• Set of values = machine state.
•Operations on values = machine operations.

Data Structure.
• Represent data and relationships among data in a data type.
• array, linked list, compound, multiple links per node

44

100 100 moveto
100 300 lineto
300 300 lineto
300 100 lineto
stroke

a = 2 + 3

7102
7203
1312
9330

TOY is our proxy for a real machine

TOY code
Java code

PostScript code
drawing

Interpreter

Compiler

Virtual machines you have used
• LFSR
• Stack
• TOY
• PostScript
• Java Virtual Machine

(another stack machine)

