


4.1  Performance Analysis



3

Running Time

Charles Babbage (1864)

“As soon as an Analytic Engine exists, it will necessarily
  guide the future course of the science.  Whenever any result
  is sought by its aid, the question will arise - By what course
  of calculation can these results be arrived at by the machine
  in the shortest time?”  – Charles Babbage

Analytic Engine

how many times do you
have to turn the crank?



4

The Challenge

Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s] 
Use the scientific method to understand performance.

compile debug
on test cases

solve problems
in practice



5

Scientific Method

Scientific method.

•Observe some feature of the natural world.

•Hypothesize a model that is consistent with the observations.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles. 

• Experiments must be reproducible;

•Hypotheses must be falsifiable.



6

Reasons to Analyze Algorithms

Predict performance.

• Will my program finish?

• When will my program finish?

Compare algorithms.

• Will this change make my program faster?

• How can I make my program faster?

Basis for inventing new ways to solve problems.

• Enables new technology.

• Enables new research.



7

Algorithmic Successes

N-body Simulation.

• Simulate gravitational interactions among N bodies.

• Brute force:  N2 steps.

• Barnes-Hut:  N log N steps, enables new research. Andrew Appel
PU '81 

number of bodies

(N 2)

(N log N )



8

Algorithmic Successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

•Applications:  DVD, JPEG, MRI, astrophysics, ….

• Brute force:  N2 steps.

• FFT algorithm:  N log N steps, enables new technology.
John Tukey

1965

number of samples

(N 2)

(N log N )



9

Example: Three-Sum Problem

Three-sum problem.  Given N integers, find triples that sum to 0.
Application.  Deeply related to problems in computational geometry.

TEQ.  Write a program to solve this problem.

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
 4
 30 -30   0
 30 -20 -10
-30 -10  40
-10   0  10



10

Three-Sum

public class ThreeSum
{
   // Return number of distinct triples (i, j, k)
   //     such that (a[i] + a[j] + a[k] == 0)
   public static int count(int[] a) {
      int N = a.length;
      int cnt = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
               if (a[i] + a[j] + a[k] == 0) cnt++;
      return cnt;
   }

   public static void main(String[] args)
   {
      int[] a = StdArrayIO.readInt1D(); 
      int result = count(a);
      StdOut.println(result);
   }
} 

all possible triples i < j < k



Empirical Analysis



12

Empirical Analysis

Empirical analysis.  Run the program for various input sizes.

1. Time in seconds on Jan 18, 2010 running Linux on Sun-Fire-X4100 with 16GB RAM 
2. Time in seconds in 1970 running MVT on IBM 360/50 with 256 KB RAM (estimate)

N time (1970)  1 time (2010)  2

500 62 0.03

1,000 531 0.26

2,000 4322 2.16

4,000 34377 17.18

8,000 265438 137.76



13

Stopwatch

Q.  How to time a program?
A.  A stopwatch.



14

Stopwatch

Q.  How to time a program?
A.  Use Java’s System.currentTimeMillis() method.

public static void main(String[] args)

{

   int[] a = StdArrayIO.readInt1D();

   int then = System.currentTimeMillis();

   int result = count(a);

   int now = System.currentTimeMillis();

   StdOut.println(result);

   StdOut.println((now - then)/1000.0);

}



Data analysis.  Plot running time vs. input size N.

Hypothesis. Running times on different computers differ by a constant factor. 

Q.  How does running time grow as a function of input size N ?

Data Analysis

15

2000 4000 8000

100

50

150

0

0

input size N

tim
e 

(s
ec

on
ds

)

2010

2000 4000 8000

200000

100000

300000

0

0

input size N
tim

e 
(s

ec
on

ds
)

1970



Data analysis.  Plot running time vs. input size N on a log-log scale

Hypothesis: Running time grows as the cube of the input size:   a N 3

Data Analysis

16

N T(N) lg(N) lg(T(N))

1,000 0.26 10 -1.9

2,000 2.16 11 1.1

4,000 17.18 12 4.1

8,000 137.76 13 7.1

10
lg (N)

lg
(ti

m
e)

11 12 13

1

-2

4

7

3

2

lg (T(N)) = 3 lg N + a

T(N) = a N 3

machine-dependent
constant factor

straight line of 
slope 3



17

Prediction and verification

Hypothesis.  Running time is about a N 3 for input of size N.

Q.  How to estimate a ?
A.  Solve for it!

Refined hypothesis.  Running time is about 2.7 × 10 –10 × N 3  seconds.
Prediction.  1,100 seconds for N = 16,000.

Observation.
validates hypothesis!

N time (seconds)

16000 1110.73

137.76  =  a × 80003

⇒   a  =  2.7 × 10 –10

N T(N)

1,000 0.26

2,000 2.16

4,000 17.18

8,000 137.76

Implicit hypothesis: Running 
times on different computers 
differ by a constant factor



Doubling hypothesis.  Quick two-step method for prediction.

Hypothesis: T(2N)/T(N) approaches a constant.

Step 1: Run program, doubling input size,
            to find the constant

18

Doubling hypothesis

N T(N) ratio

500 0.03 -

1,000 0.26 7.88

2,000 2.16 8.43

4,000 17.18 7.96

8,000 137.76 7.96
seems to 

converge to 816,000 1102 8

32,000 8816 8

... ...

512,000 36112957

Step 2: Extrapolate to predict next entries

137.76*8

Consistent with power law hypothesis
     a(2N)b / aNb = 2b

(exponent is lg of ratio)

Admits more functions
 Ex. T(N) = N lg N
     a(2N lg 2N) / aN lg N = 2 + 1/(lg N) ➞ 2 

1102*8

8816*84



TEQ on Performance 1 

Let F(N) be the running time of program Mystery for input N.

Observation: 

Q. Predict the running time for N = 128,000

19

public static Mystery
{
   ...
   int N = Integer.parseInt(args[0]);
   ...
}

N T(N) ratio

1,000 4

2,000 15 4

4,000 60 4

8,000 240 4



TEQ on Performance 2 

Let F(N) be the running time of program Mystery for input N.

Observation: 

Q. Order of growth of the running time?

20

public static Mystery
{
   ...
   int N = Integer.parseInt(args[0]);
   ...
}

N T(N) ratio

1,000 4

2,000 15 4

4,000 60 4

8,000 240 4



Mathematical Analysis



22

Mathematical models for running time

Total running time:  sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available. 

Donald Knuth
1974 Turing Award



23

Example:  1-sum

Q.  How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   if (a[i] == 0) count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment ≤  2 N

between N  (no zeros)
and 2N (all zeros)



24

Example:  2-sum

Q.  How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   for (int j = i+1; j < N; j++)
      if (a[i] + a[j] == 0) count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare 1/2 (N + 1) (N + 2)

equal to compare 1/2 N (N − 1)

array access N (N − 1)

increment ≤  N 2

tedious to count exactly

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥



• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. 6 N 3   +  20 N   +  16	
 	
 ~   6 N 3

Ex 2. 6 N 3   +  100 N 4/3  +  56	
 ~   6 N 3

Ex 3. 6 N 3   +  17 N  2  lg N  +  7 N	
 ~   6 N 3

25

Tilde notation

discard lower-order terms
(e.g., N = 1000: 6 billion vs. 169 million)

Technical definition.   f(N) ~ g(N)  means

€ 

lim
N→ ∞

 f (N)
g(N)

 =  1



26

Example:  2-sum

Q.  How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
   for (int j = i+1; j < N; j++)
      if (a[i] + a[j] == 0) count++;

operation frequency time per op total time

variable declaration ~  N c1 ~  c1 N

assignment statement ~  N c2 ~  c2 N

less than comparison ~ 1/2 N 2
c3 ~  c3 N 2

equal to comparison ~ 1/2 N 2
c3 ~  c3 N 2

array access ~  N 2 c4 ~  c4 N 2

increment ≤  N 2 c5 ≤  c5 N 2

total ~  c N 2

"inner loop"

depends on machine

depends on 
input data



27

Example:  3-sum

Q.  How many instructions as a function of N?

Remark.  Focus on instructions in inner loop; ignore everything else!

�
N

3

⇥
=

N(N � 1)(N � 2)
3!

⇥ 1
6
N3

int count = 0;

for (int i = 0; i < N; i++)

   for (int j = i+1; j < N; j++)

      for (int k = j+1; k < N; k++)

         if (a[i] + a[j] + a[k] == 0)

            count++;

"inner loop"

~ N 2 / 2

~ N

~ 1

 may be in inner loop, depends on input data



In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line.  We use approximate models in this course:  TN ~ c  N3.

TN  =  c1 A  +  c2 B  +  c3 C  +  c4 D  +  c5 E
A = variable declarations 
B = assignment statements
C = compare
D = array access
E = increment

Mathematical models for running time

28

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)



29

Constants in Power Law

Power law.  Running time of a typical program is   ~ a N b.

Exponent b depends on:  algorithm.

Constant a depends on:

• algorithm

• input data 

• hardware (CPU, memory, cache, ...)

• software (compiler, interpreter, garbage collector,...)

• system (network, other applications,...

Our approach.  

• Empirical analysis (doubling hypothesis to determine b, solve for a)

•Mathematical analysis (approximate models based on frequency counts)

• Scientific method (validate models through extrapolation)

system dependent effects

system independent effects

not quite, there may be lg(N) or 
similar factors



30

Analysis:  Empirical vs. Mathematical

Empirical analysis.

• Use doubling hypothesis to solve for a and b in power-law model ~ a N b.

• Easy to perform experiments.

•Model useful for predicting, but not for explaining.

Mathematical analysis.

• Analyze algorithm to develop a model of running time as a function of N
[gives a power-law or similar model where doubling hypothesis is valid].

•May require advanced mathematics. 

•Model useful for predicting and explaining.

Scientific method.  

•Mathematical model is independent of a particular machine or compiler; 
can apply to machines not yet built.

• Empirical analysis is necessary to validate mathematical models.

not quite, need empirical study to find a nowadays



31

Order of Growth Classifications

Observation.  A small subset of mathematical functions suffice to describe 
running time of many fundamental algorithms.

for (int i = 0; i < N; i++)
   ...

N

for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
      ...

N2

while (N > 1) {
   N = N / 2;
   ...
}

lg N

public static void f(int N) {
   if (N == 0) return;   
   f(N-1);
   f(N-1);
   ...  
}

2N

public static void g(int N) {
   if (N == 0) return;
   g(N/2);
   g(N/2);
   for (int i = 0; i < N; i++)
      ...
}

N lg N
lg N = log2 N



32

Order of Growth Classifications



33

Order of Growth:  Consequences

no change



Dynamic Programming



35

Binomial Coefficients

Binomial coefficient.                number of ways to choose k of n elements.

Pascal's identity.€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =  

€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    =    

n−1
k −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     +     

n−1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

contains
first element

excludes
first element



36

Binomial coefficient.               number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

Probability of 6-4-2-1 split in bridge:

Binomial Coefficients:  Poker Odds

€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =  

€ 

13
1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ×  

48
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

52
7

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  =   224,848
133,784,560

   (about  594 : 1)

€ 

4
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  ×  

13
6

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ×  

3
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  ×  

13
4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ×  

2
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  ×  

13
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ×  

1
1
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  ×  

13
1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

52
13
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

 =   29,858,811,840
635,013,559,600

   (about  21 : 1)



37

Binomial Coefficients:  First Attempt

public class SlowBinomial
{
   // Natural recursive implementation
   public static long binomial(long n, long k)
   {
      if (k == 0) return 1;
      if (n == 0) return 0;
      return binomial(n-1, k-1) + binomial(n-1, k);
   }
   
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      int K = Integer.parseInt(args[1]);
      StdOut.println(binomial(N, K));
   }

}



TEQ on Performance 3 

Is this an efficient way to compute binomial coefficients?

38

   public static long binomial(long n, long k)
   {
      if (k == 0) return 1;
      if (n == 0) return 0;
      return binomial(n-1, k-1) + binomial(n-1, k);
   }



TEQ on Performance 3 

Is this an efficient way to compute binomial coefficients?

39

   public static long binomial(long n, long k)
   {
      if (k == 0) return 1;
      if (n == 0) return 0;
      return binomial(n-1, k-1) + binomial(n-1, k);
   }

A. NO, NO, NO: same essential recomputation flaw as naive Fibonacci. 

(50, 25)

(49, 24) (49, 25)

(48, 23)

(47, 22) (47, 23)

(48, 24)

(47, 23)(47, 24)

(48, 25)

(47, 24) (47, 25)

(48, 24)

(47, 23) (47, 24)

recursion tree for naïve binomial function



TEQ on Performance 4

Let F(N) be the time to compute binomial(2N, N) using the naive algorithm.

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

40

   public static long binomial(long n, long k)
   {
      if (k == 0) return 1;
      if (n == 0) return 0;
      return binomial(n-1, k-1) + binomial(n-1, k);
   }



41

Key idea.  Save solutions to subproblems to avoid recomputation.

Tradeoff.  Trade (a little) memory for (a huge amount of) time.

Dynamic Programming

0 1 2 3 4

0 1 0 0 0 0

1 1 1 0 0

2 1 2 1 0 0

3 1 3 3 1 0

4 1 4 6 4 1

5 1 5 10 10 5

6 1 6 15 20 15

0

n

k

binomial(n, k) € 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =   

n−1
k −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   +   

n−1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

20 = 10 + 10



42

Binomial Coefficients:  Dynamic Programming

public class Binomial
{
   public static void main(String[] args) {
      int N = Integer.parseInt(args[0]);
      int K = Integer.parseInt(args[1]);
      long[][] bin = new long[N+1][K+1];

      // base cases
      for (int k = 1; k <= K; k++) bin[0][K] = 0;
      for (int n = 0; n <= N; n++) bin[N][0] = 1;

      // bottom-up dynamic programming
      for (int n = 1; n <= N; n++)
         for (int k = 1; k <= K; k++)
            bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

      // print results
      StdOut.println(bin[N][K]);
   }
}



TEQ on Performance 5

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

What is the order of growth of the running time?

43

      for (int n = 1; n <= 2*N; n++)
         for (int k = 1; k <= N; k++)
            bin[n][k] = bin[n-1][k-1] + bin[n-1][k];



44

In the real world: Stirling's Approximation

Why not use the formula to compute binomial coeffiecients?

Doesn’t work:  52! overflows a long, even though final result doesn't.

Instead of computing exact values, use Stirling's approximation:

:

€ 

ln n! ≈  n ln n  −  n  +  ln(2π n)
2

 +  1
12n

 −  1
360n3  +  1

1260n5

€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =  n!

n! (n− k)!

approach order of growth
of running time

comment

recursive 2N useless unless N is very small

dynamic programming N 2 best way to get exact answer

direct from formula N no good for large N (overflow)

Stirling’s approximation constant extremely accurate in practice



Memory



46

Typical Memory Requirements for Java Data Types

Bit.  0 or 1.
Byte.  8 bits.
Megabyte (MB).  210 bytes ~ 1 million bytes.
Gigabyte (GB).  220 bytes ~ 1 billion bytes.

Q. What's the biggest double array you can store on your computer?

typical computer '10 has about 2GB memory



TEQ on Performance 6

How much memory does this program use (as a function of N)?

47

public class RandomWalk
{
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      int[][] count = new int[N][N];
      int x = N/2;
      int y = N/2;

      for (int i = 0; i < N; i++)  {
         // no new variable declared in loop
         ...
         count[x][y]++;
      }
   } 
}



48

Summary

Q.  How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method

Q.  What if it's not fast enough? Not enough memory?

•Understand why.

• Buy a faster computer.

• Learn a better algorithm (COS 226, COS 423).

• Discover a new algorithm.

does not apply to
some problems

makes "everything"
run fasterapplicability

dramatic qualitative 
improvements possible

$ or less.

better algorithmbetter machineattribute

$$$ or more.cost

incremental quantitative 
improvements expectedimprovement


