

2.3 Recursion

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?

- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.

- Binary search, mergesort, FFT, GCD.
- Linked data structures.
- A folder contains files and other folders.

Closely related to mathematical induction.

M. C. Escher, 1956

Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by

- base case: Prove it for some specific N (usually 0 or 1).
- induction step: Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Sum of the first N odd integers is N^{2}.

Base case: True for $\mathrm{N}=1$.

Induction step:

- Let $T(N)$ be the sum of the first N odd integers: $1+3+5+\ldots+(2 N-1)$.
- Assume that $T(N-1)=(N-1)^{2}$.
- $T(N)=T(N-1)+(2 N-1)$

$$
\begin{aligned}
& =(N-1)^{2}+(2 N-1) \\
& =N^{2}-2 N+1+(2 N-1) \\
& =N^{2}
\end{aligned}
$$

Recursive Program

Recursive Program. Implement a function having integer arguments by

- base case: Do something specific in response to "base" argument values.
- reduction step: Assume the function works for the base case, and use the function to implement itself for general argument values.

```
public static String convert(int x)
{
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

Ex 1. Convert positive int to binary String.
Base case: return "1" for $x=1$.
Reduction step:

- convert $x / 2$ to binary
$37 \quad 18$
- append " 0 " if x even
"100101" = "10010" + "1"
- append " 1 " if \times odd

Recursive Program

Recursive Program. Implement a function having integer arguments by - base case: Implementing it for some specific values of the arguments. - reduction step: Assume the function works for smaller values of its arguments and use it to implement it for the given values.

```
public class Binary
{
    public static int convert(int x)
    {
        if (x == 1) return "1";
        else return convert(x/2) + (x % 2);
    }
    public static void main(String[] args)
    {
        int x = Integer.parseInt(args[0]);
        System.out.println(convert(x));
```

```
% java Binary 6
```

% java Binary 6
110
110
% java Binary 37
% java Binary 37
100101
100101
% java Binary }99999
% java Binary }99999
11110100001000111111

```
11110100001000111111
```


Use mathematical induction to prove recursive programs correct

Recursive Program. Implement a function having integer arguments by

- base case: Implementing it for some specific values of the arguments.
- reduction step: Assume the function works for smaller values of its arguments and use it to implement it for the given values.

Mathematical induction. Prove a statement involving an integer N by

- base case: Prove it for some specific N (usually 0 or 1).
- induction step: Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Proof by induction for convert ().
Base case: returns " 1 " for $x=1$.
Induction step:

- Assume correct for $x / 2$.

```
public static String convert(int x)
{
    if (x == 1) return "";
    return convert(x/2) + (x % 2);
}
```

- correct to append " 0 " if x even since $x=2(x / 2)$
- correct to append "1" if x odd since $x=2(x / 2)+1$

Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

```
public static String convert(int x)
{
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

```
public static String convertNR(int x)
{
    String s = "1";
    while (x > 1)
    {
        s=(x % 2) + s;
        x = x/2;
    }
    return s;
}
```

Reasons to use recursion:

- code more compact
- easier to understand
- easier to reason about correctness
- easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. $\operatorname{gcd}(4032,1272)=24$.

$$
\begin{aligned}
4032 & =2^{6} \times 3^{2} \times 7^{1} \\
1272 & =2^{3} \times 3^{1} \times 53^{1} \\
\text { gcd } & =2^{3} \times 3^{1}=24
\end{aligned}
$$

Applications.

- Simplify fractions: 1272/4032 = 53/168.
- RSA cryptosystem.

Greatest Common Divisor

GCD. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{ll}
p & \text { if } q=0 \\
\operatorname{gcd}(q, p \% q) & \text { otherwise }
\end{array} \leftarrow \begin{array}{l}
\text { base case } \\
\text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

```
gcd(4032, 1272) = gcd(1272, 216)
    = gcd(216, 192)
    = gcd(192, 24)
    = gcd(24, 0)
    4032=3 * 1272 + 216
```


Euclid's Algorithm

GCD. Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{lll}
p & \text { if } q=0 & \leftarrow \\
\text { base case } \\
\operatorname{gcd}(q, p \% q) & \text { otherwise } & \leftarrow \\
\text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

$$
\begin{aligned}
& p=8 x \\
& q=3 x
\end{aligned}
$$

$$
\operatorname{gcd}(p, q)=\operatorname{gcd}(3 x, 2 x)=x
$$

Euclid's Algorithm

GCD. Find largest integer d that evenly divides into p and q.

$$
\operatorname{gcd}(p, q)=\left\{\begin{array}{lll}
p & \text { if } q=0 & \leftarrow \\
\text { base case } \\
\operatorname{gcd}(q, p \% q) & \text { otherwise } & \leftarrow \\
\text { reduction step, } \\
\text { converges to base case }
\end{array}\right.
$$

Recursive program

```
public static int gcd(int p, int q)
{
    if (q == 0) return p; }\quad b base cas
    else return gcd(q, p % q); 
```

Possible debugging challenges with recursion

Missing base case.

```
public static double BAD(int N)
{
    return BAD (N-1) + 1.0/N;
}
```

No convergence guarantee.

```
public static double BAD(int N)
{
    if (N == 1) return 1.0;
    return BAD(1 + N/2) + 1.0/N;
}
```

Both lead to INFINITE RECURSIVE LOOP (bad news).

Collatz Sequence

Collatz sequence.

- If n is 1 , stop.
- If n is even, divide by 2.
- If n is odd, multiply by 3 and add 1 .

Ex. 3510653160804020105168421.

```
public static void collatz(int N)
{
    Stdout.print(N + " ");
    if (N == 1) return;
    if (N % 2 == 0) collatz(N / 2);
    collatz(3*N + 1);
}
```


THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY Two AND IF IT'S OOD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEOURE LONG ENOUGH, EVENTUALY YOUR FRIENDS WIL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.

No one knows whether or not this function terminates for all N (!)
[usually we decrease N for all recursive calls]

Recursive Graphics

New Yorker Magazine, August 11, 2008

Black, White and Read All Over Over

必

 번
保

寝组
住
值
约
 CH
州我团

 CH

Htree

H-tree of order n.

- Draw an H.
and half the size
- Recursively draw 4 H -trees of order n -1, one connected to each tip.

Htree in Java

```
public class Htree
{
    public static void draw(int n, double sz, double x, double y)
    {
        if (n == 0) return;
        double x0 = x - sz/2, x1 = x + sz/2;
        double y0 = y - sz/2, y1 = y + sz/2;
            StdDraw.line(x0, y, x1, y);
        StdDraw.line(x0, y0, x0, y1); \longleftarrow draw the H, centered on (x,y)
        StdDraw.line(x1, y0, x1, y1);
        draw(n-1, sz/2, x0, y0);
        draw(n-1, sz/2, x0, y1);
        draw(n-1, sz/2, x1, y0);
        draw(n-1, sz/2, x1, y1);
    }
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        draw(n, .5, .5, .5);
    }
}
```


Animated H -tree

Animated H -tree. Pause for 1 second after drawing each H .

Divide-and-Conquer

Divide-and-conquer paradigm.

- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.
- Midpoint displacement method for fractional Brownian motion.

Application: Fractional Brownian Motion

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.

- Price of stocks.
- Dispersion of ink flowing in water.
- Rugged shapes of mountains and clouds.
- Fractal landscapes and textures for computer graphics.

Simulating Brownian Motion

Midpoint displacement method.

- Maintain an interval with endpoints (x_{0}, y_{0}) and (x_{1}, y_{1}).
- Divide the interval in half.
- Choose δ at random from Gaussian distribution.
- Set $x_{m}=\left(x_{0}+x_{1}\right) / 2$ and $y_{m}=\left(y_{0}+y_{1}\right) / 2+\delta$.
- Recur on the left and right intervals.

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.

- Maintain an interval with endpoints (x_{0}, y_{0}) and (x_{1}, y_{1}).
- Choose δ at random from Gaussian distribution.
- Divide the interval in half: Set $x_{m}=\left(x_{0}+x_{1}\right) / 2$ and $y_{m}=\left(y_{0}+y_{1}\right) / 2+\delta$.
- Recur on the left and right intervals.

```
public static void curve(double x0, double y0,
                            double x1, double y1, double var)
{
    if (x1 - x0 < 0.01)
    {
        StdDraw.line(x0, y0, x1, y1);
        return;
    }
    double xm = (x0 + x1) / 2;
    double ym = (y0 + y1) / 2;
    ym += StdRandom.gaussian(0, Math.sqrt(var));
    curve (x0, y0, xm, ym, var/2);
    curve(xm, ym, x1, y1, var/2);
```

\qquad
}

Plasma Cloud

Plasma cloud centered at (x, y) of size s.

- Each corner labeled with some grayscale value.
- Divide square into four quadrants.
- The grayscale of each new corner is the average of others.
- center: average of the four corners + random displacement
- others: average of two original corners
- Recur on the four quadrants.

Plasma Cloud

Towers of Hanoi

http://en. wikipedia.org/wiki/Image:Hanoiklein.jpg

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

start

finish

Towers of Hanoi: Recursive Solution

Move $n-1$ smallest discs right.

Move largest disc left.
cyclic wrap-around

Move $\mathrm{n}-1$ smallest discs right.

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?

- 64 golden discs on 3 diamond pegs.
- World ends when certain group of monks accomplish task.
Q. Will computer algorithms help?

Towers of Hanoi: Recursive Solution

```
public class TowersOfHanoi
{
    public static void moves(int n, boolean left)
    {
            if (n == 0) return;
            moves(n-1, !left);
            if (left) System.out.println(n + " left");
            else System.out.println(n + " right");
            moves(n-1, !left);
        }
        public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        moves(N, true);
    }
}
```

moves (n, true) : move discs 1 to n one pole to the left
moves (n, false): move discs 1 to n one pole to the right

Towers of Hanoi: Recursive Solution

```
% java TowersOfHanoi 3
1 left
2 right
l left
3 left
l left
2 right
1 left
```

every other move is smallest disc

subdivisions
of
ruler

Towers of Hanoi: Recursion Tree

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.

- Takes $2^{n}-1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
- move smallest disc to right if n is even
- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n=64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!

Fibonacci Numbers

Fibonacci Numbers

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

Fibonacci rabbits

A Possible Pitfall With Recursion

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { otherwise }\end{cases}
$$

A natural for recursion?

```
public static long F(int n)
{
    if (n == 0) return 0;
    if (n == 1) return 1;
        return F(n-1) + F(n-2);
}
```

FYI (classical math):

$$
\begin{aligned}
& F(n)=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}} \\
&=\left\lfloor\phi^{n} / \sqrt{5}\right\rfloor \\
& \phi=\text { golden ratio } \approx 1.618
\end{aligned}
$$

$$
E x: F(50) \approx 1.2 \times 10^{10}
$$

TEQ on Recursion 1.1 (difficult but important)

Is this an efficient way to compute $F(50)$?

```
public static long F(int n)
{
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```


TEQ on Recursion 1.2 (easy and also important)

Is this an efficient way to compute $F(50)$?

```
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```


Summary

How to write simple recursive programs?

- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

Why learn recursion?

- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.

- Easy to specify recursive program that takes exponential time.
- Don't do it unless you plan to (and are working on a small problem).

