
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

EXH 3. TO REPLY ASTRACHAN DECL. ISO GOOGLE’S MSJ

CASE NO. 3:10-cv-03561-WHA
577739.01

KEKER & VAN NEST LLP
ROBERT A. VAN NEST - #84065
rvannest@kvn.com
CHRISTA M. ANDERSON - #184325
canderson@kvn.com
633 Battery Street
San Francisco, CA 94111-1809
Telephone: 415.391.5400
Facsimile: 415.397.7188

KING & SPALDING LLP
DONALD F. ZIMMER, JR. - #112279
fzimmer@kslaw.com
CHERYL A. SABNIS - #224323
csabnis@kslaw.com
101 Second St., Suite 2300
San Francisco, CA 94105
Telephone: 415.318.1200
Facsimile: 415.318.1300

KING & SPALDING LLP
SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
1185 Avenue of the Americas
New York, NY 10036
Telephone: 212.556.2100
Facsimile: 212.556.2222

GREENBERG TRAURIG, LLP
IAN C. BALLON - #141819
ballon@gtlaw.com
HEATHER MEEKER - #172148
meekerh@gtlaw.com
1900 University Avenue
East Palo Alto, CA 94303
Telephone: 650.328.8500
Facsimile: 650.328.8508

Attorneys for Defendant
GOOGLE INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.,

Plaintiff,

v.

GOOGLE INC.,

Defendant.

Case No. 3:10-cv-03561-WHA

EXHIBIT 3 TO REPLY DECLARATION
OF OWEN ASTRACHAN IN SUPPORT
OF DEFENDANT GOOGLE INC.’S
MOTION FOR SUMMARY JUDGMENT
ON COUNT VIII OF PLAINTIFF
ORACLE AMERICA’S AMENDED
COMPLAINT

Judge: Hon. William Alsup

Hearing: 2:00 p.m., September 15, 2011

PUBLICLY FILED VERSION

REDACTED

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page1 of 42

EXHIBIT 3

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page2 of 42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ROBERT A. VAN NEST — #84065
rvannest@kvn.com
CHRISTA M. ANDERSON — #184325
canderson@kvn.com
KEKER & VAN NEST LLP
710 Sansome Street
San Francisco, CA 94111-1704
Telephone: (415) 391-5400
Facsimile: (415) 397-7188

DONALD F. ZIMMER, JR. (SBN 112279)
fzimmer@kslaw.com
CHERYL A. SABNIS (SBN 224323)
csabnis@kslaw.com
KING & SPALDING LLP
101 Second Street – Suite 2300
San Francisco, CA 94105
Telephone: (415) 318-1200
Facsimile: (415) 318-1300

Attorneys for Defendant
GOOGLE INC.

SCOTT T. WEINGAERTNER (Pro Hac Vice)
sweingaertner@kslaw.com
ROBERT F. PERRY
rperry@kslaw.com
BRUCE W. BABER (Pro Hac Vice)
bbaber@kslaw.com
KING & SPALDING LLP
1185 Avenue of the Americas
New York, NY 10036-4003
Telephone: (212) 556-2100
Facsimile: (212) 556-2222

IAN C. BALLON (SBN 141819)
ballon@gtlaw.com
VALERIE HO (SBN 200505)
hov@gtlaw.com
HEATHER MEEKER (SBN 172148)
meekerh@gtlaw.com
GREENBERG TRAURIG, LLP
1900 University Avenue
East Palo Alto, CA 94303
Telephone: (650) 328-8500
Facsimile: (650) 328-8508

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

ORACLE AMERICA, INC.

Plaintiff,

v.

GOOGLE INC.

Defendant.

Case No. 3:10-cv-03561-WHA

Honorable Judge William Alsup

REBUTTAL EXPERT REPORT OF DR.
OWEN ASTRACHAN

CONFIDENTIAL PURSUANT TO
PROTECTIVE ORDER-
HIGHLY CONFIDENTIAL - SOURCE
CODE

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page3 of 42

1
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I. INTRODUCTION .. 2

II. DOCUMENTS AND INFORMATION CONSIDERED 2

III. BRIEF SUMMARY OF MY OPINIONS.. 3

IV. THE DISTINCTION BETWEEN AN API AND ITS
IMPLEMENTATION .. 3

V. GOOGLE’S IMPLEMENTATION OF THE APIs AT ISSUE
IS NOT VIRTUALLY IDENTICAL OR SUBSTANTIALLY
SIMILAR TO ORACLE’S IMPLEMENTATION................................ 14

VI. THE VARIOUS JAVA VERSIONS THAT ORACLE
ALLEGES WERE INFRINGED CONTAIN THE SAME
APIs AS EARLIER VERSIONS OR VERSIONS FOR
OTHER OPERATING SYSTEMS .. 18

VII. PARAMETER NAMES ARE FUNCTIONAL AND NOT
CREATIVE... 19

VIII. THE ORGANIZATION OF PACKAGES IS FUNCTIONAL
AND DOES NOT CONTAIN CREATIVE EXPRESSION.................. 20

IX. C#, LIKE JAVA, IS UNPROTECTABLE, AND IS ALSO
AVAILABLE AS AN OPEN SPECIFICATION AND
IMPLEMENTATION .. 22

X. ORACLE’S ANALYSIS OF THE FILES AT ISSUE DOES
NOT DISCUSS THEIR QUALITATIVE OR
QUANTITATIVE IMPORTANCE, WITH ONE
EXCEPTION THAT IS INCORRECT.. 23

EXHIBIT F: COMPARISON OF ANDROID AND ORACLE
ZIPFILE.GETINPUTSTREAM

EXHIBIT G: PUBLICPRIVATEANALYZER.PY SOURCE CODE

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page4 of 42

2
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

I. INTRODUCTION

1. I have been asked by Google to review the expert reports of John C. Mitchell, Marc

Visnick, and Alan Purdy and, in addition to those opinions offered in my July 29, 2011

Opening Expert Report (“Opening Report”), to opine on the conclusions set forth in those

reports, and whether Oracle’s allegedly copyrighted works relating to the Android

platform are virtually identical or substantially similar to the Java platform.

2. My qualifications, set forth in my Opening Report, are incorporated herein by reference.

3. I understand that I may be asked by Google to review further submissions related to

copyright issues from Oracle’s experts, and to provide my opinions on issues raised by

any such submissions.

4. I understand that I may be called upon to testify in this case regarding my opinions and

analyses set forth in this report. If called upon to testify, I may use various

demonstratives, including tables or drawings, to assist in presenting my testimony.

5. As set forth in my Opening Report, my compensation does not depend in any way on the

outcome of this litigation.

II. DOCUMENTS AND INFORMATION CONSIDERED

6. My opinions are based on my relevant knowledge and experience, the documents

identified in Exhibit B to my Opening Report, as well as review of the following

documents and information:

a. Opening Expert Report of John C. Mitchell Regarding Copyright, Opening Expert

Report of Alan Purdy Regarding Copyright, and Opening Expert Report of Marc

Visnick Regarding Copyright, all dated July 29, 2011.

b. “Design Patterns: Elements of Reusable Object-Oriented Software,” by Erich

Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

c. Mono Website page on ECMA, available at http://www.mono-

project.com/ECMA; Microsoft Open Specifications, available at

http://www.microsoft.com/openspecifications/en/us/programs/community-

promise/covered-specifications/default.aspx

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page5 of 42

3
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

d. “Q&A with Tim Bray,” November 13, 2006, available at

http://www.zdnet.com/blog/burnette/q-a-with-tim-bray/200?pg=3

III. BRIEF SUMMARY OF MY OPINIONS

7. Based upon my review of the material set forth in Section II, I disagree with Prof.

Mitchell’s conclusion regarding whether elements of the Java API specifications contain

copyrightable expression. I also disagree with Prof. Mitchell’s conclusion that the

Android source code is substantially similar to Oracle’s copyrighted source code. It is

my opinion that Google’s implementation of the APIs at issue is neither virtually

identical nor substantially similar to Oracle’s implementation.

IV. THE DISTINCTION BETWEEN AN API AND ITS IMPLEMENTATION

8. As discussed in paragraph 52 of my Opening Report, every API, including the Java APIs

at issue in this case, exists in two forms: the method declaration of the API (comprised of

those elements — name, arguments, and return — described in paragraphs 40-47 of my

Opening Report) and the implementation of the API. The implementation is the actual

underlying source code that implements the API and allows the API to function. Any

two implementations of the same API will contain some similar portions, because each

implementation must include exactly the same method declaration, including all the

elements of the declaration, such as the arguments and return values, in order to be

compatible. However, the overall source code may — and indeed does — differ

significantly from implementation to implementation. Even if only a small fraction of the

source code of two implementations is identical, the remaining code may appear similar

to the untrained eye, both because certain key lines (the method, package, and class

declarations) must be the same, and because practical considerations will constrain the

expression of the code implementing the functionality. For example, there may be both

efficient and inefficient ways to implement a given method, but programmers will

typically choose the most efficient way. Similarly, coding standards relating to

indentation, punctuation, and formatting will also constrain how code is written. In

addition, because many programmers have learned by studying and reading source code

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page6 of 42

4
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

written by others, they typically write code in a similar style. Returning to the car

analogy that is set forth in my Opening Report, there may be unusual ways to power a car

(hydrogen, rotary engines, etc.), but in most cases the solutions will end up looking

similar to other implementations for practical reasons due to standard design practices,

and not because the car manufacturers were copying from each other.

9. An API implementation that uses only the necessary API components, but does not repeat

the underlying implementation, is an “independent” implementation. A Ford and a

Chevy are, in this sense, independent implementations of a car — while they both provide

drivers with the same gas pedal and steering interface to the underlying functionality,

Chevy engineers likely did not photocopy Ford blueprints in order to build the Chevy’s

engine and steering mechanism. Similarly, the fact that virtually every modern computer

application supports common keyboard commands like Ctl+C, Ctl+V, and Ctl+P does not

prove that the programmers used each other’s implementation source code. Instead, they

have each re-implemented the functionality in a way that makes sense for their

circumstances, reusing only the “interface” of the keyboard commands.

10. To illustrate how an API must be identical across Java implementations, even while the

implementations differ, I will use three examples. Before doing that, it is first useful to

provide an analogy that will help to explain the source code being discussed here. In

particular, the different implementations of APIs are similar to different sets of driving

directions that take someone from point A to point B. In this analogy, the starting point,

A, is like an argument, and the ending point, B, is like a return value. Like an API

implementation that is constrained by the method declaration, every set of directions that

goes from point A to point B will begin and end the same way (“leave the parking lot at

point A,” “enter the parking lot at point B”); however, there may be many other

variations between the directions. For example, one set of directions might take the

highway, while another might take back roads. One set of directions might prioritize

giving directions in the fewest number of turns, while another set of directions might take

more turns, but use those extra steps to avoid an area of high traffic. Another pair of

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page7 of 42

5
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

directions might be identical, except that one adds special steps to be taken during rush

hour.

11. Of course, directions, like computer programs, are subject to practical constraints because

they are process-driven expressions. You could write directions from San Jose to San

Francisco that go by way of New York, but those directions would be so inefficient that,

while possible, they are not a realistic option in practice. And in some cases, there will

be so few options for how to get from point A to point B that in fact there is only one way

to write the directions.

12. The source code discussed in the following examples is similar. Each implementation

tells the underlying computer how to get to a particular result, but as I will explain, the

Android “directions” generally are different from the Oracle “directions.” Although they

get the same result — starting from the inputs and ending at the return values — they

take different steps to get there.

BEGIN ORACLE SOURCE CODE - HIGHLY CONFIDENTIAL

13. The first example is one I have used earlier: the Math.abs function. As discussed in

paragraphs 57-60 of my Opening Report, the absolute value of an integer is essentially

the magnitude of the integer, i.e., the distance of the integer from zero. Similarly,

paragraph 60 of my Opening Report states that the declaration of the method (the

function name, return type, and parameter type) is specified as part of the Math.abs API

and must be the same in any compatible implementation of the Math.abs API. The

following chart (from paragraph 61 of my Opening Report) shows the various identical

method declarations for abs from the various implementations of Java:

Java: public static int abs(int a)

Harmony: public static int abs(int i)

GNU Classpath: public static int abs(int i)

Android: public static int abs(int i)

(As I explain in paragraph 15, below, the variable name chosen for the parameter in the

parentheses need not be the same, and, in fact, the variable name in the Android

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page8 of 42

6
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

implementation is different than in Oracle’s implementation.)

14. Not surprisingly, because the concept is so simple (“if the number is negative, give the

positive version of it”) the implementations are very brief — all it takes is one line for the

declaration, and one line for the actual functionality. Despite this simplicity and brevity,

Oracle and Android’s implementations of Java are different. The table below shows the

Android source code that implements the Math.abs function in the java.lang.Math class

compared to the source code that implements JDK1.5 code.

Android Math.abs Oracle JDK 1.5 Math.abs
public static int abs(int i) {

return i >= 0 ? i : -i;
}

public static int abs(int a) {
return (a < 0) ? -a : a;

}

15. As required by the API, the first line of the method — the function name, return type, and

parameter type — are essentially identical in both implementations. The name of the

parameter — a for the JDK1.5 implementation and i in the Android implementation — is

the only thing different. The parameter name can be different because the name of the

parameter is not part of the API. The parameter type, int, on the other hand, must be the

same if the two implementations are to be compatible.

16. The actual implementation of the method — the second line, shown in blue — is how the

absolute value is calculated. Each of these lines of code is different, but nevertheless

correct. Put into English, the line of code from the Android implementation translates to

“if the parameter i is greater than or equal to zero, return i, otherwise return i’s negation.”

In the JDK1.5 implementation the code translates to English as “if the parameter a is less

than zero, return a’s negation, otherwise return a.” While these implementations must

capture the same functionality, and bear some similarity because of the requirement that

the method name and arguments be the same, they capture the functionality with different

implementations.

17. The second example I will use to illustrate how the functionality expressed by an API is

implemented differently is the java.lang.String class method String.compareTo. In

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page9 of 42

7
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

programming, a “string” is a sequence of characters, such as a word or sentence. The

compareTo method compares two strings, in order to determine whether one string is less

than, equal to, or greater than another string. In programming, a string that is “less than”

another string is alphabetized first. For example, if “compareTo” was used to compare

“apple” to “cat,” the method would indicate that “apple” is less than “cat.”

18. Below is the Android and Oracle JDK 1.5 source code that implements the compareTo

method.

Android String.compareTo Oracle JDK 1.5 String.compareTo
1 public int compareTo(String string) { public int compareTo(String anotherString) {

2 // Code adapted from K&R, pg 101 int len1 = count;

3 int o1 = offset, o2 = string.offset,
result;

int len2 = anotherString.count;

4 int end = offset + (count < string.count ?
count : string.count);

int n = Math.min(len1, len2);

5 char[] target = string.value; char v1[] = value;

6 while (o1 < end) { char v2[] = anotherString.value;

7 if ((result = value[o1++] - target[o2++])
!= 0) {

int i = offset;

8 return result; int j = anotherString.offset;

9 }

10 } if (i == j) {

11 return count - string.count; int k = i;

12 } int lim = n + i;

13 while (k < lim) {

14 char c1 = v1[k];

15 char c2 = v2[k];

16 if (c1 != c2) {

17 return c1 - c2;

18 }

19 k++;

20 }

21 } else {

22 while (n-- != 0) {

23 char c1 = v1[i++];

24 char c2 = v2[j++];

25 if (c1 != c2) {

26 return c1 - c2;

27 }

28 }

29 }

30 return len1 - len2;

31 }

19. As noted in a comment on line 2 of the Android implementation (on the left), the Android

implementation of compareTo is adapted and based on code from “K&R,” a reference to

“The C Programming Language,” a book written by the C language’s principal authors,

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page10 of 42

8
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Brian Kernighan and Dennis Ritchie. The K&R book, and the code contained within it,

were published long before the Java language existed. The body of the function — that is

the code between and including the function’s curly braces (i.e., the “{” and “}” that

mark the beginning and end of the source code for a function) — is 11 lines long.

20. In the Oracle JDK 1.5 implementation on the right, the first part of the first line of the

implementation is the same as the Android implementation on the left — “public int

compareTo(String”. Again, this similarity is required for compatibility. Use of the

same parameter name, however, is not required for compatibility, and so the parameter

named string in the Android implementation is instead anotherString in the Oracle JDK

1.5 implementation. The Oracle implementation is also 31 lines, instead of the Android

implementation’s 15, indicating again that different algorithms and language features

were used to reach the same result. The longer Oracle implementation is like a set of

driving directions that takes complicated, twisty back roads in hopes of avoiding traffic

on the big intersections, making it longer in miles, but possibly more scenic or shorter in

time — in other words, possibly more efficient in other ways.

21. These two implementations are functionally identical — they compare the corresponding

characters of two strings — but the actual code is very different. For example, in

comparing the string “catastrophe” to “catalog” the code scans the first four characters,

and finds that they are the same. It then determines the relative order of the strings by

comparing the fifth characters — s in catastrophe and l in catalog. In the Android

implementation the two characters compared are captured by the expressions

value[o1++] and target[o2++] whereas in the JDK1.5 implementation these

characters are stored in variables c1 and c2 and are captured by the expressions

v1[i++] and v2[j++] in one part of the code and v1[k] and v2[k] in a different

part of the code. In both versions of the code, once a difference in characters is detected

(i.e., s and l in the catastrophe and catalog example), the code need not compare further

characters to determine the relative order of the strings. For example, in comparing “ant”

and “bee” comparisons stop after the first characters have been examined, but when

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page11 of 42

9
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

comparing “distance” and “distant” the function can only determine the relative order

after examining the seventh character of each string (c and t). Despite the similar

functionality, the code that performs these comparisons and looks at the corresponding

characters of each string is very different.

22. To further illustrate how the same compareTo API can be implemented in various ways,

the GNU Classpath implementation of the String.compareTo method is shown in the

following table, and is different from both the Android and Oracle JDK 1.5

implementations. Again, all of these sets of source code implement the same underlying

functionality — they compare two strings of characters by examining each individual

character until corresponding characters are different. The method name, return type, and

parameter type (“public int compareTo(String”) are again identical, as they

must be for compatibility and interoperability. However, the way these sets of source

code actually achieve this functionality differs significantly. For example, the Android

implementation uses variable names o1 and o2 whereas the Classpath implementation

uses variables x and y. The Android and Classpath implementations (unlike the Oracle

implementation) both use a concept called a “while” loop that repeats a given operation

“while” a particular condition is true, but the loop in the Android implementation uses the

condition while (o1 < end) whereas the loop in the Classpath implementation uses

the condition while (--i > 0). And again, like the Android and Oracle

implementations, these implementations are of different length, though the difference is

much smaller. Although the logic used in the Android and Classpath implementations is

the same, the implementations are very different.

Android String.compareTo GNU Classpath String.compareTo
1 public int compareTo(String string) { public int compareTo(String anotherString)

2 // Code adapted from K&R, pg 101 {

3 int o1 = offset, o2 = string.offset, result; int i = Math.min(count,
anotherString.count);

4 int end = offset + (count < string.count ?
count : string.count);

int x = offset;

5 char[] target = string.value; int y = anotherString.offset;

6 while (o1 < end) { while (--i >= 0)

7 if ((result = value[o1++] - target[o2++])
!= 0) {

{

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page12 of 42

10
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8 return result; int result = value[x++] -
anotherString.value[y++];

9 } if (result != 0)

10 } return result;

11 return count - string.count; }

12 } return count - anotherString.count;

13 }

23. The final example that I will use to compare implementations is the class ZipFile from

the package java.util.zip. This class manipulates “zip” files, which are files that contain

one or more other files, so that those files can be easily emailed, stored, and otherwise

moved around. Because zip files are archival, they allow many files or folders to be

packaged together as a single zip file. In addition, zip files are “compressed” — that is to

say, a zip file is usually smaller than the sum of the sizes of the files contained in the zip

file. Each of the files stored in a zip file is referred to as an “entry” in the zip file.

24. The Java API package java.util.zip contains several classes for creating, reading, writing,

and manipulating zip files and the files (“entries”) stored within them. In particular, I

will focus on the class ZipFile and the method getInputStream from that class in order to

compare and contrast an API with its implementation.

25. Among the public methods in ZipFile is one called getInputStream, which is used to

“read” a zip file — i.e., to access the archived and compressed contents stored in a given

zip file. The getInputStream method does this by creating an “InputStream,” which is a

standard way for Java programmers to access files and other data sources. An

InputStream is essentially a representation of a steady stream of information. Programs

written in the Java language can act on these streams in a variety of ways, such as reading

the next piece of data in the stream, skipping ahead to another part of the stream, and

finding out how much of the stream is still available to be read. When a program written

in the Java language opens, closes, and reads documents or other files, the program is

using an input stream.

26. This functionality — both the ZipFile class generally and the getInputStream method

specifically — can be implemented in a variety of ways. As I will discuss in more detail

in paragraph 35, the implementation of a class can contain both “public” methods — or

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page13 of 42

11
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

methods that can be used by any programmer when writing programs — and “private”

methods — or methods that can only be used by the code implementing the class, and

used only for the purpose of implementing other parts of the class. “Public” and

“private” methods can also be thought of as “external” and “internal” methods,

respectively — public methods can be used from outside of the program, while private

methods are “internal” to the program and can only be used by that program, not by other

programs. For one class to be compatible and interoperable with another class, both must

have the same public methods, but they may have different private methods and still be

compatible. The Android implementation of ZipFile contains two private methods used

to help implement the public methods. The Oracle JDK 1.5 implementation of ZipFile,

in contrast, contains 20 private methods. The GNU Classpath ZipFile.java

implementation contains seven private methods. This significant difference in the

number of private methods illustrates that although the public methods of the API are

similar, as they must be, the internal implementations of these methods and the class

ZipFile are very different. It might be helpful to think of the Oracle implementation,

which contains many private methods, as a pasta recipe that, in turn, refers to 20 other

recipes — the pasta dough recipe, the pasta sauce recipe, a salad recipe to be served

alongside, etc. The Android “recipe” for ZipFile, in contrast, refers only to two other

recipes, incorporating the other components into the main recipe. Both the Android and

Oracle recipes, in the end, create pasta, but use different processes to get there.

27. Just as the ZipFile classes in these two implementations as a whole are different, the

getInputStream method in each is also different. Both the Oracle and Android

implementations of the getInputStream method accomplish the same task: when given a

“ZipEntry” object (i.e., a reference to one of the files or directories in a zip file), return

an input stream that allows the program to read that entry. However, the source code that

implements Oracle JDK 1.5 method ZipFile.getInputStream, including the private helper

methods and classes it uses, is 275 lines of code. Android’s implementation of the same

method, including its private classes and methods, is 120 lines of code. (Because of their

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page14 of 42

12
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

length, the table with this code is attached as Exhibit F.)1 This is a very large difference

in how the methods are implemented.

28. However, it is not just the length of the two implementations that distinguish them. They

are also structurally different, which can be seen by analyzing the “private” methods and

classes used in the implementations. Both the Android and JDK 1.5 methods use private

classes to represent the input stream that corresponds to the file or directory being read.

Android’s implementation uses two internal classes, named RAFstream and

ZipInflaterInputStream.2 These classes “extend” (i.e., are based on and add new

functionality to) other classes — InputStream and InflaterInputStream, respectively. The

Oracle JDK 1.5 implementation of ZipFile.getInputStream

.

.

.

. In the Java code there are three private methods (highlighted in

the table below in blue) whereas there are none in the Android implementation. Again,

the usage of structurally different private methods and classes indicates, in my opinion,

that the implementation of these specific methods are very different, and more generally,

shows how analysis of private methods can be used to help understand whether or not

two given implementations are similar.

29. The methods in the source code that implements the complex task of creating the

InputStream differs, but that is not the only difference — a more detailed analysis shows

that even the relatively simple programming task of ensuring that the ZipFile has a name

is implemented differently. The fragment of the ZipFile.getInputStream source code that

implements this simple functionality is shown in the table below. The Oracle JDK 1.5

implementation .

1 For ease of reference, in this rebuttal report I will not reuse exhibit labels used in my Opening Report.
2 Technically these are not private - they can be used by other parts of the API package. However, the classes are
only used within the ZipFile.java file, and can’t be used by external programs, so they are effectively private.

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page15 of 42

13
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

.

. ..

30. The Android version has several key differences. First, it does not use a helper function

— it does the work itself. Second, if the FileEntry has no name, the Android code simply

returns “null” — i.e., an empty value — ..

. Third, the Android source code finds the name of the Entry in a

different way from the Oracle code — .

. —

represented in the Android code by entry.getName. While this difference may look

subtle (only three characters), the approach used by the Oracle code is generally

considered bad style; ..

. ..

Android ZipFile.getInputStream
[fragment]

Oracle JDK 1.5
ZipFile.getInputStream [fragment]

1 public InputStream getInputStream(ZipEntry
entry) throws IOException {

public InputStream getInputStream(ZipEntry
entry) throws IOException {

2 entry = getEntry(entry.getName());

3 if (entry == null) { }

4 return null; ..
..........................

5 }

6
.

7 .

8

9

10

11

12
..

13

14

15 .

16

17
.............

18

19
...

20 .

21 .

22 ...

31. By looking closely at ZipFile.getInputStream, I have shown that the same, compatible,

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page16 of 42

14
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

interoperable functionality can differ in many ways — overall, by simply comparing the

length of the two implementations; at an intermediate level, by showing that there are

different names and numbers of private methods and classes used to implement the

functionality; and at a granular level, by showing that one particular subtask is

implemented in different ways.

END ORACLE SOURCE CODE - HIGHLY CONFIDENTIAL

32. In each of these three methods examined in this section, I have shown that the

programmatic logic used to implement a particular method can be very different, with

only one small portion — the method name and argument types — being the same.

These files are typical of all Android and Oracle JDK 1.5 files that I have inspected —

one small portion, which is required to be the same for purposes of compatibility and

interoperability, is the same, and the rest of the file is different. As a result, I disagree

with Prof. Mitchell’s conclusion that the Android source code is substantially similar to

Oracle’s copyrighted source code. Instead, it is my opinion that Google’s

implementation of the APIs at issue is not virtually identical or substantially similar to

Oracle’s implementation.

V. GOOGLE’S IMPLEMENTATION OF THE APIS AT ISSUE IS NOT

VIRTUALLY IDENTICAL OR SUBSTANTIALLY SIMILAR TO ORACLE’S

IMPLEMENTATION

33. I understand from the Visnick and Purdy reports that, with the exception of portions of a

dozen files, Oracle does not allege that Google has copied Oracle’s implementation of the

Java APIs. Instead, Oracle only alleges that the classes, interfaces (including fields,

constructors, and method signatures), and exceptions are similar in both platforms. In

other words, except for 12 files identified by Visnick out of the 9,479 files in Oracle’s

implementation of Java 1.5, Oracle does not allege that Google copied source code from

Oracle. As explained in Section V.Q (paragraph 129) of my Opening Report, the names

and parameters of the APIs must be the same for interoperability and efficiency reasons.

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page17 of 42

15
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

While the Android software is compatible with and provided the functionality of the Java

language APIs at issue, and necessarily uses the same API names and organization in

order to do so, my opinion, after my review of the Android and Oracle source code, is

that Android’s underlying implementation (or source code) of the APIs is substantially

different from Oracle’s implementation. Put another way, Android is written in the Java

language and compatible with programs that use the Java language APIs at issue, so that

developers can reuse their existing code in the Java language on both the Android and

Java platforms, but the Android source code was not copied from the source code in

Oracle’s Java platform. Rather, leaving aside the 12 files identified by Mr. Visnick and

addressed in paragraphs 150-177 of my Opening Report, Android includes an

independent implementation of the Java language APIs at issue, created without copying

the Java platform’s source code.

34. Besides the kind of line-by-line analysis done from paragraphs 12-15, we can analyze the

differences in the implementations of the APIs by examining the names of the private

methods of each implementation. In my opinion, the different names for these private

methods show that the Android source code was not copied from the Oracle JDK 1.5

source code.

35. As explained above in paragraph 24, “public methods” are the methods that are made

available for use by programmers who use an API to write applications. These must be

the same if the two implementations are to be compatible. In contrast, “private methods”

help to implement the API but are not visible or available for use by software developers

building their own software. The classes that are at issue in this case have public

methods that must be implemented in order to be compatible with the API, e.g., Math.abs

and Math.sqrt in the java.lang package. However, the API does not dictate how the

methods are implemented. I demonstrated in paragraph 24’s analysis of getInputStream

that private, helper functions are often used in implementing the public methods required

by the APIs. Differences in the private methods reflect differences in the

implementations. For example, a simple way to see the differences in the

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page18 of 42

16
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

implementations above is to list the names of the private methods, and compare the two.

If the names and quantity of the private methods in the two implementations are different,

then the implementations themselves are also different. For example, the getInputStream

method is implemented using different private methods and private classes in the

different implementations — the Android implementation uses three private methods and

two private classes, whereas the Oracle JDK 1.5 implementation uses two private classes

but no private methods. This difference in the number of the private methods and classes

(and in many places, also the type and name of the internal structures) indicates that the

two implementations have very different underlying structures and therefore are not

similar. This is akin to two very different tables of contents for two books that are on the

same topic — differences between the two tables strongly suggests that the underlying

content will also be different.

36. Using software I developed to analyze the classes examined in this report, I detected

large differences in how public and private methods are used across the Android, GNU

Classpath, and Oracle JDK 1.5 implementations. I used the program (attached as Exhibit

G) to examine the accused packages, and created the table below to summarize the data

for the 740 public classes and interfaces in common between the Android and Java

implementations of the 37 accused packages. For comparison, I have also provided

information on the GNU Classpath implementation of the same materials.

37. The column labeled “Total Methods” provides the total number of methods (including

constructors) found across all classes. The column labeled “Total Private Methods”

shows how many of these methods are labeled as private, and hence not accessible to

programmers but used to implement the public methods. As I discussed in the example

of the getInputStream method in the java.util.zip class, sometimes private methods are

used to implement the public methods, but they are not part of a class’s API because

programmers using the class cannot access the private methods. The column labeled

“Percent Private” provides one estimate of how often private methods are used across all

classes. Each of these classes contributes a percentage between zero and one hundred to

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page19 of 42

17
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

a running total. If all methods in a class are private, the percent private for that class is

100%. If all methods are public and none are private, the percent private is 0%. The

percentage shown in the column is the average of these per-class percentages across all

classes. The significant difference between the Android and Oracle implementations in

this metric shows that the Android classes use, on average, fewer private methods than

the other Java implementations. In my opinion, this indicates that the implementations

are significantly structurally different. The structural difference between the

implementations is also indicated by the total number of methods that differ across the

implementations. Methods can be public, private, or package access, and it is possible to

add public methods that are not part of the API. The differences between the total number

of methods across the implementations is a further indication that the implementations of

the APIs are very different.

 Packages
Total

Methods

Total
Private

Methods
Percent
Private

Android 37 8994 970 5.92%
GNU
Classpath

37 7365 576 4.11%

JDK 1.5 37 8190 1369 7.17%

38. The substantially different numbers of classes and methods, and the different ratio of

public to private methods, strongly suggests that each of the implementations measured is

substantially different from the other. In particular, recall from paragraphs 24 and 35 that

to achieve compatibility and interoperability, private methods, unlike public methods, are

not required to be the same. As a result, the very different number of total private

methods in the implementations of the allegedly infringed packages leads me to conclude

that, when the authors of the three pieces of software were not constrained by

compatibility, they took very different routes to implement the functionality. My direct

inspection of a cross-section of the files at issue confirms the results of this numerical

approach. As expected from a review of the overall numbers, in the individual classes,

the number of private methods and classes, and their underlying implementation, also

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page20 of 42

18
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

vary substantially between the two implementations.

39. As a result of this analysis, it is my opinion that the Android and Oracle JDK

implementations are not virtually identical or substantially similar. The only meaningful

similarities I have observed are between elements that — as discussed in my Opening

Report (section V.J to V.R, paragraphs 90-139) — are necessary for compatibility and

interoperability.

VI. THE VARIOUS JAVA VERSIONS THAT ORACLE ALLEGES WERE

INFRINGED CONTAIN THE SAME APIS AS EARLIER VERSIONS OR

VERSIONS FOR OTHER OPERATING SYSTEMS

40. It is my understanding that Oracle first asserted on July 29, 2011 that Google allegedly

infringed its copyright in Java 6. Java 6, like the other allegedly infringed Java versions,

contains all the APIs that were contained in previous versions of Java. This is because it

is Java’s stated policy, for purposes of compatibility, to keep versions of Java as similar

as possible to previous versions. When new versions are released, API elements are

essentially never changed or removed, only added. This is known as “upwards”

compatibility, as referenced in the Java SE Compatibility Policy (available at

http://java.sun.com/j2se/1.5.0/compatibility.html.) As a result of this policy, the APIs in

Java 1.1 are also present, in their entirety, in Java 1.2; all Java 1.1 and any new APIs

added in Java 1.2 are present in Java 1.3; all Java 1.2 APIs and any new APIs added in

Java 1.3 are present in Java 1.4; and so on.

41. Similarly, it is my understanding that some of the allegedly copied works are Java 1.2 for

Windows, Java 1.2 for Linux, Java 1.2 for Mac, Java 1.2 for Solaris, and the same set of

platforms for Java 1.3. These works contain deliberately contain the same APIs and API

packages. If their APIs were different, it would defeat Java’s stated purpose of “write

once, run anywhere.” The API implementations for each operating system differ,

however, so that they will work with the specific operating system. For example, the

lastModified method in the java.io.File class asks the underlying operating system when a

file was last modified, and returns that time to the program. This method’s name,

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page21 of 42

19
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

parameters, and return value (in other words, its API) are the same in Java 1.2 for

Windows, Java 1.2 for Mac, as well as Android. The source code that implements the

lastModified functionality for Java 1.2 for Windows (the function

Java_java_io_Win32FileSystem_getLastModifiedTime contained in the file

Win32FileSyste_md.c) is different from the source code for lastModified in Java 1.2 for

Solaris (the function Java_java_io_UnixFileSystem_getLastModifiedTime contained in

the file UnixFileSystem_md.c). This is necessary, because the different operating

systems, and their file systems, tell time differently, and so this source code must

“translate” the underlying operating system’s time information into the standard Java

time system. In fact, because Java’s time-keeping system is heavily inspired by Solaris’s

system, the Unix code for this purpose is roughly 1/3rd the length of the Windows code

— less “translation” work is required. Despite these differences in the underlying

implementation, as a result of this deliberate goal of making APIs available and

compatible across different operating systems, these different works necessarily contain

the same groups of APIs.

VII. PARAMETER NAMES ARE FUNCTIONAL AND NOT CREATIVE

42. Prof. Mitchell’s report asserts that parameter names are particularly creative, purportedly

because they are not reused by programmers. It is correct that the parameter names need

not be reused by programmers, who choose their own names when interacting with a

method. However, these parameter names still play a functional role because they serve

to inform programmers what kind of information the method expects. Like the other

components discussed in Section V.L (paragraph 102) of my Opening Report, this

functional requirement creates practical restraints on the developer’s choice of how to

convey information. So, for example, the creators of an API do have the flexibility to

call the integer value used by the “abs” function “a,” “i,” “x,” or “Steve.” However, if

the value is named “Steve,” that will still make the documentation and specification of

the method unnecessarily confusing to developers who are trying to understand the API.

43. It may be helpful to think about the “creativity” involved in choosing parameter names

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page22 of 42

20
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(and other named elements in an API) as analogous to the creation of a recipe. In writing

down a recipe for cooking a steak, there are a variety of different choices a cook could

make in describing a given ingredient. The main ingredient could be called a “steak,” the

“beef,” or even something more unusual like the “cut of cow.” That said, practical

constraints (such as consumer expectations about ingredient names in recipes) will limit

the reasonable choices for the ingredient name. As one extreme example, a cook

certainly could choose to call the steak “flubber,” and explain to the reader that “flubber”

is meant to refer to the cut of meat being cooked, but this would make it difficult for the

typical reader to process the instructions in the recipe. Calling the steak “flubber” is thus,

as a practical matter, not a reasonable option.

44. A stated in paragraph 112 of my Opening Report, it is my opinion that there is no

meaningful expressive creativity in short, fragmentary words and phrases. All the

parameters in the Java APIs at issue are names and fragmentary phrases, and so they

similarly lack expressive creativity. For example, many methods use parameters that are

single letters (such as a) that reflect the parameter’s roots in algebra. Others are simply

abbreviations; for example, at least 41 parameters in Oracle’s implementation of Java 1.5

are integers called “i” (“i” being a commonly used abbreviation by programmers for

integer variables since long before the Java programming language was created) and at

least 23 are characters called “c” (again, “c” being a well-known abbreviation of

character). Many others are simple names that reflect the underlying idea being

manipulated; e.g., the single parameter name for the method JarEntry is named, simply,

“name,” and the single parameter taken by the method “setSize” is called, appropriately,

“size.”

VIII. THE ORGANIZATION OF PACKAGES IS FUNCTIONAL AND DOES NOT

CONTAIN CREATIVE EXPRESSION

45. As I discussed in section V.N, paragraph 118 of my Opening Report, the organization of

packages in Java is not creative expression. Professor Mitchell also addresses this point,

but I disagree with his conclusions. For example, in paragraph 180, Prof. Mitchell states

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page23 of 42

21
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

that the streams “ByteArray-,” “File-,” “Filter-,” and “Piped” could have been grouped

together and then divided into Input and Output classes without affecting the

functionality of the classes. This is incorrect. In fact, the organization of the base classes

InputStream and OutputStream, the hierarchy shown in Professor Mitchell’s report, and

the Reader classes and subclasses he does not mention, are all based on the “Decorator”

design pattern from the classic computer science textbook “Design Patterns,” by Gamma,

Helm, Johnson, and Vlissides. This book is so commonly assigned to undergraduate

computer science students that it has a nickname in the computer science profession —

the “Gang of Four” book. The “design patterns” described in the textbook are common

methods of organizing computer code, and are widely used in the industry as templates

— i.e., “patterns” — that sophisticated professional developers should use when

organizing their own code. Use of these patterns is not merely a good idea; the patterns

help dictate how APIs are designed, because in order for APIs to be accepted and used by

developers, it is important to use design rules and guidelines (like the patterns in Design

Patterns) that the developer community views as accepted and well-understood. Prof.

Mitchell’s focus on a design that is simply appealing aesthetically is not necessarily a

good indication that the design is good from a functional perspective. Instead, reliance

on established patterns of organization — like Decorator — is usually a more reliable

way of building software.

46. In this case, use of the Decorator design pattern helps to ensure that new types of

InputStreams or OutputStreams can be easily added to the hierarchy. Use of the

Decorator pattern also facilitates interactions between InputStreams and Reader classes,

an important aspect of the java.io package that helps move between streams and files of

characters (e.g., the characters of various alphabets) and streams and files of bytes (a

lower level kind of data than a character). Although it may be true that a different design

could yield the same functionality in terms of reading files or other streams, an API

designer must also, for example, ensure that new classes can be added to solve problems

that were not anticipated when the API is designed, and the Decorator design pattern used

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page24 of 42

22
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

here is designed to do that. A different design — one using a different design pattern, or

not using an established design pattern at all — might make it difficult to add new

functionality, or use existing classes together in novel ways. Use of the vetted and

established Decorator pattern from the Design Patterns text helps to avoid these

problems. In this way, the choices in the design of java.io referenced by Professor

Mitchell are still highly constrained by the software’s functionality. This is not to say

that the resulting functionality is not aesthetically pleasing, but Prof. Mitchell,

unfortunately, has made the mistake of confusing an aesthetically pleasing outcome with

creative expression. In this case, creative expression was not required; like a knife that

has been well-sharpened by skillful hands, logical application of consistent, basic design

rules created a beautiful outcome without necessarily implying significant creative

expression.

IX. C#, LIKE JAVA, IS UNPROTECTABLE, AND IS ALSO AVAILABLE AS AN

OPEN SPECIFICATION AND IMPLEMENTATION

47. In paragraph 121, Prof. Mitchell claims that “C# and .Net are proprietary products of

Microsoft Corporation and Google Android would have had to negotiate terms with

Microsoft.” (emphasis mine). Prof. Mitchell does not define “proprietary” or otherwise

substantiate this claim. It is my opinion that C# and .Net have very similar characteristics

to Java, and so Prof. Mitchell’s implicit claim that use of C# and .Net would have

imposed a different or more significant legal burden than Java because they are

purportedly proprietary is incorrect.

48. C# is a programming language, and .Net is the collection of libraries that form C#’s

platform, similar to the role the Java Class Libraries play in the Java platform ecosystem.

C# and .Net have APIs. Like the Java APIs, the C# and .Net APIs are functional methods

of operations that are constrained by a variety of requirements. As explained in my

Opening Report, APIs with these characteristics may not be protectable under copyright

law, so it is incorrect to refer to C# and .Net as “proprietary” without detailed analysis of

the C# and .Net APIs. Certain aspects of C# and .Net may be protectable, but (as with

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page25 of 42

23
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Java) other aspects may not be, and it would appear premature to characterize C# as

“proprietary” or assume that Google could not use it without doing more analysis than

Prof. Mitchell appears to have done.

49. More concretely, C# and .Net are also not proprietary (as the word is commonly used) in

at least two significant respects. First, significant components of C# and .Net have been

made available by Microsoft through the international standards body ECMA as open

standards that can be implemented by anyone. (See, e.g., http://www.ecma-

international.org/publications/standards/Ecma-334.htm and http://www.mono-

project.com/ECMA.) The patents associated with these standards have been made

available to the public for anyone to implement under Microsoft’s “Community Promise”

for specifications. (See

http://www.microsoft.com/openspecifications/en/us/programs/community-

promise/covered-specifications/default.aspx.) Second, a third-party version of C# and

.Net, called “Mono,” is available in part under a permissive license that allows anyone

(including Google and Android, should it so desire) to reuse the code. (See

http://www.mono-project.com/FAQ:_Licensing.) Again, these two facts (Microsoft’s

publication of a standard, and the existence of a permissively licensed implementation

not authored by Microsoft) suggest that Prof. Mitchell’s claim that C# and .Net are

proprietary is not correct.

X. ORACLE’S ANALYSIS OF THE FILES AT ISSUE DOES NOT DISCUSS THEIR

QUALITATIVE OR QUANTITATIVE IMPORTANCE, WITH ONE

EXCEPTION THAT IS INCORRECT

50. The Mitchell and Visnick reports discuss the dozen files which I also address in my

Opening Report. However, they do not address the qualitative or quantitative importance

of these files, glossing over the fact that (as I discussed at length in my Opening Report)

these files constitute an incredibly small percentage of the two works at issue — less than

0.13% of Oracle’s implementation of Java 1.5 when measured by number of files, less

than 0.03% of Oracle’s implementation of Java 1.5 when measured by lines of code, and

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page26 of 42

24
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

less than 0.02% of Android by number of files and less than 0.005% of Android by lines

of code.

51. Visnick's report states that 12 Android source code files are copied. These are the same

12 files that I discussed in my opening report. I have not confirmed his methodology, but

if he is correct, he admits that at most 12 files out of 57,076 files in Android (0.02%) and

9,479 files in Oracle’s implementation of Java 1.5 (0.13%) were copied. When the lines

of code that Mr. Visnick alleges are similar are compared, the numbers are even smaller

— 0.03% of Oracle’s implementation and 0.005% of Android. Thus, assuming that his

methodology is correct, all Mr. Visnick’s report does is confirm that a very small number

and percentage of allegedly copied files are at issue, and Mr. Visnick in fact proves my

point in paragraph 150 of my Opening Report that these files represent a quantitatively

very small portion of the works at issue.

52. Mr. Visnick’s report makes no attempt at explaining why these 12 files might be

qualitatively important to Java or Android.

53. In comparing the Android APIs to the Java APIs in paragraphs 200-208, outside of the

names and organization that is necessary for compatibility and interoperability, Prof.

Mitchell never identifies any Android source code that implements these APIs and is

identical or even substantially similar to any Oracle source code. Similarly, when

discussing use of the method signatures in paragraphs 212-213, he again focuses on one

line in each method (the signature) and does not discuss or analyze the source code that

implements these methods. As I have shown in paragraphs 13-32 and 34-39, the source

code that implements these methods in Android is not substantially similar to any Oracle

source code. In fact the method signatures are a tiny percentage of the works at issue;

each method signature is typically one line of source code, so the 8190 public methods in

the 37 packages at issue constitute less than 0.3% of the 2.8 million lines of code in Java

1.5. Prof. Mitchell glosses over this by saying that there are "hundreds" of files which

contain these method signatures, but neither his discussions nor Exhibit Copyright-G

actually compare the Oracle implementation to the Google implementation. Actually

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page27 of 42

25
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

doing this comparison, as I have done, shows that the signatures are a very small part of

the source code, and that the other components of the source code are not substantially

similar.

54. Prof. Mitchell’s comparison of the Android source code files to the APIs, without doing

an analysis of the Oracle source code, is at odds with public statements made by Sun. In

2006, Tim Bray, who was then Director of Web Technologies at Sun, stated that in Sun's

view, an alternative implementation of the Java APIs would only infringe Sun's rights if

there was “a direct and substantial copying of code.” He also stated that in Sun's view

there was “no issue” with GNU Classpath’s implementation of the Java APIs. (See

“Q&A with Tim Bray,” available at http://www.zdnet.com/blog/burnette/q-a-with-tim-

bray/200?pg=3.) As I have shown, GNU Classpath, like Android, is an independent

implementation of the Java APIs, with no “direct and substantial copying of code,” so if

GNU Classpath raises no issues, then Android’s use of the Java language API

specifications should also raise no issues.

55. Prof. Mitchell’s report does state briefly in paragraph 235 that, despite constituting only

0.28% by lines of code of the file Arrays.java, “[n]evertheless, rangeCheck is

qualitatively significant to arrays.java, as it is called nine times by other methods in the

class.” Prof. Mitchell’s reliance on frequency of use to assess qualitative significance is

misplaced, for several reasons.

56. First, frequency of use is a poor proxy for qualitative significance. For example, in

building a car, one designer might choose to use hundreds of 9 mm bolts, while another

might choose 3/8 inch bolts. The fact that hundreds of these bolts were used does not

mean that the decision to use 9 mm bolts was qualitatively significant to the car’s design.

Just as the 9 mm bolts perform a mundane function, so too does the rangeCheck method,

for the reasons I explained in my Opening Report in paragraphs 153-156.

57. Second, as a general matter, reuse of a function may or may not be indicative of its

qualitative importance; it may indicate simply that something is simple and frequently

reused, or perhaps that it is used inefficiently. In fact, while rangeCheck is used nine

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page28 of 42

26
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

times in Oracle’s Arrays.java, it is used only once in Android’s TimSort.java, and only

once in Android’s Comparable TimSort.java.

58. Third, in this specific case, the function is reused multiple times in the Oracle code

largely because the programming of Arrays.java is inefficient as a result of constraints

imposed by the Java language. A comment in the file indicates that:
/*
* The code for each of the seven primitive types is largely

identical.
* C'est la vie.
*/

This repetition of identical code is often a sign that code has been repeated needlessly,

and in this case, the “c’est la vie” comment from the original programmer seems to

perhaps acknowledge that he regretted the “largely identical” code. The code is identical,

and reused seven times, because the Java language does not support a feature called

“generic functions for primitive types.” If the Arrays.java functionality were

implemented in a different language that supported this feature, such as C++ or C#, there

would be only one copy of rangeCheck, not seven. Thus the metric of number of calls is

not a measure of the importance of rangeCheck, but rather of the inadequacies imposed

by the Java language. These seven sets of “largely identical” code explain seven of the

nine uses of rangeCheck. The other two uses are similar in that they are also called prior

to sorting arrays, but for sorting arrays of Objects rather than primitive types. As a result,

it is incorrect to say that the mere numerical use of rangeCheck makes the function

qualitatively significant; instead, a more plausible interpretation is that the nine uses of

rangeCheck in Arrays.java justify a conclusion that the file was written to cope with

inadequacies of the Java language, incorrectly inflating any alleged importance of

rangeCheck. (TimSort.java and ComparableTimSort.java do not have to cope with this

inadequacy because they do not operate on the so-called primitive types.)

59. Finally, it should be noted that Arrays.java, TimSort.java, and ComparableTimSort.java

all provide the functionality of sorting arrays. As noted in my Opening Report, at the

time Oracle was first made aware of TimSort.java and ComparableTimSort.java, Oracle’s

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page29 of 42

27
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

reaction was not to complain of any alleged “copying,” but rather to accept TimSort.java

and ComparableTimSort.java as contributions to Java to be distributed to every single

user of Java, and to praise the author’s contribution as significantly increasing the speed

and performance of Java. That this one, very brief segment of these two files is similar to

code in Arrays.java should strongly suggest (even to someone untrained in programming)

that the important part of the TimSort.java and ComparableTimSort.java files are the over

900 lines that are completely different (as opposed to the allegedly similar 9 lines of

code), since it is this different part that had such a significant impact on the functionality

and efficiency of the software. As a result of these four points, and in agreement with the

analysis in my Opening Report, it is my opinion that this method is not qualitatively

significant, either to the file Arrays.java or to the infringed work as a whole.

60. I reserve the right to update and refine my opinions and analyses based on any additional

materials or information that may come to my attention in the future, including additional

contentions by Oracle as well as any rulings issued by the Court in this case. I also

reserve the right to supplement my opinions and analyses as set forth in this report in

light of any expert reports submitted by Oracle and in light of any deposition or trial

testimony of Oracle’s experts.

DATED: August 12, 2011

Owen Astrachan, Ph.D.

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page30 of 42

ola

1
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Exhibit F: Comparison of Android and Oracle ZipFile.getInputStream

BEGIN ORACLE SOURCE CODE - HIGHLY CONFIDENTIAL

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
1 public InputStream getInputStream(ZipEntry

entry) throws IOException {
public InputStream getInputStream(ZipEntry
entry) throws IOException {

2 /*

3 * Make sure this ZipEntry is in this Zip
file. We run it through

}

4 * the name lookup.

5 */ ...
...........................

6 entry = getEntry(entry.getName());

7 if (entry == null) {

8 return null; .

9 }

10

11 /*

12 * Create a ZipInputStream at the right
part of the file.

.............

13 */
.

14 RandomAccessFile raf = mRaf;

15 synchronized (raf) {

16 // We don't know the entry data's start
position. All we have is the

.

17 // position of the entry's local
header. At position 28 we find the

...........................

18 // length of the extra data. In some
cases this length differs from

.....................................

............

19 // the one coming in the central
header.

......

20 RAFStream rafstrm = new RAFStream(raf,

21 entry.mLocalHeaderRelOffset + 28); .

22 int localExtraLenOrWhatever =
ler.readShortLE(rafstrm);

.

23 // Skip the name and this "extra" data
or whatever it is:

...................................

24 rafstrm.skip(entry.nameLen +
localExtraLenOrWhatever);

.............................

25 rafstrm.mLength = rafstrm.mOffset +
entry.compressedSize;

............

26 if (entry.compressionMethod ==
ZipEntry.DEFLATED) {

............

27 int bufSize = Math.max(1024,
(int)Math.min(entry.getSize(),
65535L));

..............

28 return new
ZipInflaterInputStream(rafstrm, new
Inflater(true), bufSize, entry);

.......................................

........

29 } else {
..............

30 return rafstrm;

31 }

32 }
...

33 }

34 //--

35 static class RAFStream extends
InputStream {

................

36

37 RandomAccessFile mSharedRaf; .

38 long mOffset; .

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page31 of 42

2
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
39 long mLength;

.....................

40
...................

41 public RAFStream(RandomAccessFile raf,
long pos) throws IOException {

.....................................

.

42 mSharedRaf = raf;
.....

43 mOffset = pos;

44 mLength = raf.length();

45 }
...........

46 .

47 @Override
....

48 public int available() throws
IOException {

................

49 return (mOffset < mLength ? 1 : 0);

50 }

51

52 @Override .

53 public int read() throws IOException {

54 byte[] singleByteBuf = new byte[1]; .

55 if (read(singleByteBuf, 0, 1) == 1) {

56 return singleByteBuf[0] & 0XFF;
57 } else {

........

58 return -1;

59 }

60 }
..................

61
..........

62 @Override
....

63 public int read(byte[] b, int off, int
len) throws IOException {

.

64 synchronized (mSharedRaf) { ..

65 mSharedRaf.seek(mOffset);

66 if (len > mLength - mOffset) {
................

67 len = (int) (mLength -
mOffset);

.

68 } .

69 int count = mSharedRaf.read(b, off,
len);

70 if (count > 0) {

71 mOffset += count;

72 return count;
..............

73 } else { .

74 return -1; .

75 }
76 } ...

...................

77 }

78
....

79 @Override .

80 public long skip(long n) throws
IOException {

.

81 if (n > mLength - mOffset) {

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page32 of 42

3
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
82 n = mLength - mOffset;
83 }

84 mOffset += n;

85 return n;

86 }

87 }
.................

88 //--

89

90 static class ZipInflaterInputStream
extends InflaterInputStream {

........

91

92 ZipEntry entry; .

93 long bytesRead = 0; .

94 .

95 public
ZipInflaterInputStream(InputStream is,
Inflater inf, int bsize, ZipEntry
entry) {

96 super(is, inf, bsize);

97 this.entry = entry;
98 } ...

........................

99

100 @Override

101 public int read(byte[] buffer, int off,
int nbytes) throws IOException {

.......................................

102 int i = super.read(buffer, off,
nbytes);

....................

103 if (i != -1) {

104 bytesRead += i;
..............

105 }

106 return i;

107 }
.....

108
...........

109 @Override

110 public int available() throws
IOException {

....................

111 if (closed) {
................................

112 // Our superclass will throw an
exception, but there's a jtreg test
that

113 // explicitly checks that the
InputStream returned from
ZipFile.getInputStream

...............................

114 // returns 0 even when closed.

115 return 0;
.........

116 }
....

117 return super.available() == 0 ? 0 :
(int) (entry.getSize() - bytesRead);

.

118 } .

119 }
120 }

..................................

121
..............................

122
....................

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page33 of 42

4
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
123

...............

124

125

126
...............................

127

128

129 .

130 .

131
132

.........................

133

134

135

136 .

137

138

139 .

140

141

142 .

143

144

145

146

147 .

148
149

150

151 .

152

153 .

154
155

156

157

158

159
.

160

161

162
..

163 .

164 .

165 .

166
167

168

169

170
................

171

172

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page34 of 42

5
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
173 .

174

175 .

176
177

178

179 .

180
181

182

183 .

184
185

186
.......

187

188
............

189
.........

190

191 .

192 .

193 .

194
195

196

197 ...
.............

198
...........

199
..................

200
......................

201
...................

202

203

204

205

206

207

208 .

209
210

.........................

211

212

213 .

214

215

216 .

217

218

219 .

220

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page35 of 42

6
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
221

222
223

.....................

224

225 .

226

227

228

229 .

230

231

232 .

233

234 .

235

236

237

238

239

240

241

242 .

243 .

244
245

246

247

248

249

250

251

252 .

253

254 .

255
256

257
..........................

258 .

259

260

261

262 .

263

264

265

266

267
............

268
.....

269

270 .

271 .

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page36 of 42

7
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Android ZipFile.getInputStream Oracle JDK 1.5 ZipFile.getInputStream
272 .

273 .

END ORACLE SOURCE CODE - HIGHLY CONFIDENTIAL

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page37 of 42

1
HIGHLY CONFIDENTIAL - SOURCE CODE

OWEN ASTRACHAN REBUTTAL EXPERT REPORT
CIVIL ACTION NO. CV 10-03561-WHA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Exhibit G: PublicPrivateAnalyzer.py Source Code

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page38 of 42

’’’
Created as part of work on expert report
for Google/Oracle for GreenbergTraurig

5 @author: ola
@copyright: owen astrachan, compsciconsulting
’’’
import os,collections,re

10 acdict = collections.defaultdict(int)
aperclass = collections.defaultdict(int)
aprivdict = {}
aset = set()
amethnames = []

15 apubclass = set()

jcdict = collections.defaultdict(int)
jperclass = collections.defaultdict(int)
jprivdict = {}

20 jset = set()
jmethnames = []
jpubclass = set()

gcdict = collections.defaultdict(int)
25 gperclass = collections.defaultdict(int)

gprivdict = {}
gset = set()
gmethnames = []
gpubclass = set()

30
afunclist = []
jfunclist = []
gfunclist = []

35 methnames = []

public_ids = ["public class",
 "public abstract class",
 "public interface",

40 "protected class",
 "protected",
 "public"]

def is_func(line):
45 if "new " in line:

 return False
 parts = line.split()
 if line.startswith("public") and line.find(")") >= 0 and line.find("(") >= 0:
 return True

50 if line.startswith("private") and line.find(")") >= 0 and line.find("(") >= 0:
 return True
 return False

55 def getClass(path):
 ’’’
 path ends with .java, return class name preceding .java including preceding .
 e.g., for java/lang/Arrays, return .Arrays
 ’’’

60 nm = path[:−5]
 index = nm.rfind("/")
 return "."+nm[index+1:]

def pubtrack(fname,pubclass,clname):

65 f = open(fname)
 allText = f.read()
 changedText = re.sub(r"\s+"," ",allText)
 contents = changedText.split()
 for i in range(len(contents)−2):

70 if contents[i] == "public" and contents[i+1] == "class":
 pubclass.add(clname)
 break
 if contents[i] == "public" and contents[i+1] == "interface":

Aug 12, 11 15:19 Page 1/7PublicPrivateAnalyzer.py
 pubclass.add(clname)

75 break
 if contents[i] == "public" and contents[i+1] == "abstract" and contents[i+2]
 == "class":
 pubclass.add(clname)
 break
 if contents[i] == "public" and contents[i+1] == "final" and contents[i+2] =
= "class":

80 pubclass.add(clname)
 break

def do_one(packname,onepath,cdict,perclass,cset,funclist,privdict,methnames,pubc
lass):

85 if not onepath.endswith(".java"):
 return True
 if onepath.endswith("package!info.java"):
 return True

90
 class_name = getClass(onepath)
 #pubtrack(onepath,pubclass,packname+class_name)
 fullname = packname+class_name
 if not fullname in pubclass:

95 print "rejected",fullname
 return True

 f = open(onepath)

100 pcount = 0
 first = True
 public = False
 pubf = 0
 privf = 0

105 for line in f:

 line = line.strip()

 if is_func(line):

110 methnames.append(line)
 if line.startswith("public"):
 pubf += 1
 else:
 privf += 1

115 nm = packname+class_name
 if not nm in privdict:
 privdict[nm] = []
 privdict[nm].append(line)

120 if first and line.startswith("class "):
 #print "class",onepath,line
 base = os.path.basename(onepath)
 cset.add(base)

125 pfound = False
 for pub in public_ids:

 if line.startswith(pub):
 if first:

130 first = False
 if line.find("public") >= 0 or line.find("protected") >= 0:
 public = True
 else:
 print "big problem",onepath,pub,line

135 if line.find("protected") < 0:
 pcount += 1

 cdict[pub] += 1
 pfound = True

140 if line.find("class") >= 0 and line.find("extends") >= 0:
 cdict["extends"] += 1
 elif line.find("interface") >= 0 and line.find("extends") >= 0:
 cdict["extends"] += 1

Aug 12, 11 15:19 Page 2/7PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Friday August 12, 2011 1/4PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page39 of 42

 break
145

 f.close()

 perclass[pcount] += 1
 if pcount == 0:

150 #print "%s = %d" % (onepath,pcount)
 pass

 funclist.append((pubf,privf))
 return public

155

def pop_one(packname,onepath,pubclass):

 if not onepath.endswith(".java"):

160 return True
 if onepath.endswith("package!info.java"):
 return True

 class_name = getClass(onepath)

165 pubtrack(onepath,pubclass,packname+class_name)

def populate(basepath,packname,pubclass):
 parts = packname.split(".")
 pathize = ’/’.join(parts)

170 packagepath = os.path.join(basepath,pathize)
 for top in os.listdir(packagepath):
 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)

175 pass
 else:
 c = pop_one(packname,top_path,pubclass)

180 def topcount(basepath,packname,cdict,perclass,cset,funclist,privdict,methnames,p
ubclass):
 parts = packname.split(".")
 pathize = ’/’.join(parts)
 packagepath = os.path.join(basepath,pathize)
 for top in os.listdir(packagepath):

185 top_path = os.path.join(packagepath,top)
 if os.path.isdir(top_path):
 #print "*** %s is a directory in %s" % (top,packagepath)
 pass
 else:

190 c = do_one(packname,top_path,cdict,perclass,cset,funclist,privdict,m
ethnames,pubclass)
 if not c:
 #print "no public",top_path,top
 pass
 #print "%s has %d public" % (top_path,c)

195
def func_stats(coll):
 low = 0
 word_total = 0
 wt_count = 0

200 nonlow = 0
 getter = 0
 setter = 0
 req = 0

205 obj_names = ["toString", "hashCode", "notifyAll", "getClass"]

 for nm in coll:
 if nm.islower():
 low += 1

210 #print "\t lower",nm
 else:
 wc = 0
 for i,ch in enumerate(nm):
 if ch.isupper() and i > 0 and nm[i−1].islower():

Aug 12, 11 15:19 Page 3/7PublicPrivateAnalyzer.py
215 wc += 1

 wc += 1
 #word_total += wc
 nonlow += 1

220
 if nm.startswith("get"):
 getter += 1
 elif nm.startswith("set"):
 setter += 1

225 elif nm in obj_names:
 req += 1
 else:
 word_total += wc
 wt_count += 1

230
 print "total = %d, one = %d more = %d\n" % (nonlow+low,low,nonlow)
 print "perc = %f avg = %f\n" % (1.0*low/(low+nonlow),1.0*word_total/wt_count)
 print "non simple = %d\n" % (wt_count)

235 print "getter = %d, setter = %d, req = %d, total = %d\n" % (getter,setter,req,req+getter+se
tter)

def funcalyze(methnames):
 all_names = set()
 names = []

240 for meth in methnames:
 if meth.startswith("public"):
 nameEnd = meth.find("(")
 if nameEnd == −1:
 print "error on ",meth

245 else:
 name = meth[:nameEnd]
 space = name.rfind(" ")
 mname = name[space+1:]
 all_names.add(mname)

250 names.append(mname)

 print "total = %d, unique = %d\n" % (len(names), len(all_names))
 print "unique"
 func_stats(all_names)

255 print "total"
 func_stats(names)

 meth_counts = [(names.count(nm),nm) for nm in all_names]
 smc = sorted(meth_counts, reverse=True)

260 print "top func occurrences"
 for pair in smc[:20]:
 print pair

265 return all_names

def report(cdict,perclass,funclist,privdict,methnames):
270

 uset = funcalyze(methnames)

 ctotal = 0

275 for key in cdict:
 if key.find("public") < 0:
 continue
 print "%s occurrences = %d" % (key,cdict[key])
 if key.find("class") >= 0 or key.find("interface") >= 0:

280 ctotal += cdict[key]
 print "!!!!"
 print "public class/interface total = %d" % (ctotal)

 ctotal = 0

285 for key in cdict:
 if key.find("protected") < 0:

Aug 12, 11 15:19 Page 4/7PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Friday August 12, 2011 2/4PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page40 of 42

 continue
 print "%s occurrences = %d" % (key,cdict[key])
 if key.find("class") >= 0 or key.find("interface") >= 0:

290 ctotal += cdict[key]
 print "!!!!"
 print "protected class/interface total = %d" % (ctotal)

 print "per class method counts"

295 print "# methods\t#classes"
 total = 0
 levels = collections.defaultdict(int)
 levlist = [0,1,6,11,16,21,51,101,100001]
 for method_count in sorted(perclass.keys()):

300 print "%d\t%d" % (method_count,perclass[method_count])
 total += method_count*perclass[method_count]
 for lev in xrange(1,len(levlist)):
 if levlist[lev−1] <= method_count < levlist[lev]:
 levels[lev] += perclass[method_count]

305 print "!!!!!"
 print "total methods = %d" % (total)
 print "\n!!!summary!!"
 total = 0
 for lev in xrange(1,len(levlist)):

310 print "perclass from %d to %d = %d" % (levlist[lev−1],levlist[lev]−1,levels[le
v])
 total += levels[lev]
 print "total = %d" % (total)

 print "size of funclist = %d" % (len(funclist))

315 total = 0
 totalMeths = 0
 totalPriv = 0
 for x in funclist:
 totalMeths += x[0] + x[1]

320 totalPriv += x[1]
 if x[0] != 0 or x[1] != 0:
 total += 100.0*x[0]/(x[1]+x[0])
 print "average = %f" % (total/len(funclist))
 print "total meths = %d" % (totalMeths)

325 print "total private = %d" % (totalPriv)
 return uset

def analyze():

330 apath = "/Users/ola/expert/google/SOURCE/libcore/luni/src/main/java"
 javapath = "/Users/ola/expert/google/ESOURCE/j2se/src/share/classes"
 gnupath = "/Users/ola/expert/google/source!gnu/classpath!0.98"

 packages = ["java.awt.font",

335 "java.beans",
 "java.io",
 "java.lang",
 "java.lang.annotation",
 "java.lang.ref",

340 "java.lang.reflect",
 #"java.math",
 "java.net",
 "java.nio",
 "java.nio.channels",

345 "java.nio.channels.spi",
 "java.nio.charset",
 "java.nio.charset.spi",
 "java.security",
 "java.security.acl",

350 "java.security.cert",
 "java.security.interfaces",
 "java.security.spec",
 "java.sql",
 "java.text",

355 "java.util",
 #"java.util.concurrent",
 #"java.util.concurrrent.atomic",
 #"java.util.concurrent.locks",

Aug 12, 11 15:19 Page 5/7PublicPrivateAnalyzer.py
 "java.util.jar",

360 "java.util.logging",
 "java.util.prefs",
 "java.util.regex",
 "java.util.zip",
 "javax.crypto",

365 "javax.crypto.interfaces",
 "javax.crypto.spec",
 "javax.net",
 "javax.net.ssl",
 "javax.security.auth",

370 "javax.security.auth.callback",
 "javax.security.auth.login",
 "javax.security.auth.x500",
 "javax.security.cert",
 "javax.sql",

375 #"javax.xml",
 #"javax.xml.datatype",
 #"javax.xml.namespace",
 #"javax.xml.parsers",
 #"javax.xml.transform",

380 #"javax.xml.transform.dom",
 #"javax.xml.transform.sax",
 #"javax.xml.transform.stream",
 #"javax.xml.validation",
 #"javax.xml.xpath"

385]

 for pack in packages:
 populate(javapath,pack,jpubclass)
 populate(apath,pack,apubclass)

390 populate(gnupath,pack,gpubclass)

 allinter = jpubclass & apubclass
 print "js = %d, as = %d, gs = %d, inter = %d\n" % (len(jpubclass),len(apubclass),len(gpu
bclass),len(allinter))

395 #return

 for pack in packages:
 print "java"
 topcount(javapath,pack,jcdict,jperclass,jset,jfunclist,jprivdict,jmethna
mes,jpubclass)

400 print "android"
 topcount(apath,pack,acdict,aperclass,aset,afunclist,aprivdict,amethnames
,apubclass)
 print "gnu"
 topcount(gnupath,pack,gcdict,gperclass,gset,gfunclist,gprivdict,gmethnam
es,gpubclass)

405 print "%d packages analyzed" % (len(packages))
 print "\nJava Analysis"
 juset = report(jcdict,jperclass,jfunclist,jprivdict,jmethnames)
 print "\nAndroid Analysis"
 auset = report(acdict,aperclass,afunclist,aprivdict,amethnames)

410 print "\nGnuClasspath Analysis"
 report(gcdict,gperclass,gfunclist,gprivdict,gmethnames)
 print "\n!!!!!"

 jmset = juset

415 amset = auset
 inter = jmset&amset
 aonly = amset−jmset
 jonly = jmset−amset
 print "android only count = ",len(aonly),len(amset)

420 print "java only count = ",len(jonly),len(jmset)
 print "android only"
 for i,n in enumerate(sorted(aonly)):
 print i,n
 print "java only"

425 for i,n in enumerate(sorted(jonly)):
 print i,n

Aug 12, 11 15:19 Page 6/7PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Friday August 12, 2011 3/4PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page41 of 42

 # public classes that are different?
japub = jpubclass − apubclass

430 # ajpub = apubclass − jpubclass
print "javapub = %d, android pub = %d, j−a = %d, a−j = %d\n" % (len(jpubcla
ss),len(apubclass), len(japub),len(ajpub))
print "java public not in android"
for nm in sorted(japub):
print nm

435 # print "−−−−−\n"
print "android public not in java"
for nm in sorted(ajpub):
print nm
print "−−−−−\n"

440

 privlog = open("privatelog","w")
 for pack in aprivdict:
 if pack in jprivdict:

445 line = "package class private {0!s}\n".format(pack)
 print "package class private %s" % (pack)
 privlog.write(line)
 for priv in aprivdict[pack]:
 line = "\tAndroid {0!s}\n".format(priv)

450 privlog.write(line)
 #print "\tAndroid %s" % (priv)
 if priv in jprivdict[pack]:
 privlog.write("\t\talso in Java\n")
 #print "\t\talso in Java"

455 for priv in jprivdict[pack]:
 if not priv in aprivdict[pack]:
 privlog.write("\tJava "+priv+"\n")
 #print "\tJava %s" % (priv)
 privlog.close()

460

465 # print "common package/private"
inter = jset&aset
for name in inter:
print name
#

470 # print "\nAndroid\n−−−−−−"
for name in aset:
print name
print "\nJava\n−−−−−−"
for name in jset:

475 # print name

480
if __name__ == "__main__":
 analyze()

Aug 12, 11 15:19 Page 7/7PublicPrivateAnalyzer.py

Printed by Owen L. Astrachan

Friday August 12, 2011 4/4PublicPrivateAnalyzer.py

Case3:10-cv-03561-WHA Document391 Filed09/06/11 Page42 of 42

