
(World Wide) Web

•  a way to connect computers that provide information (servers)
with computers that ask for it (clients like you and me)
–  uses the Internet, but it's not the same as the Internet

•  URL (uniform resource locator, e.g., http://www.amazon.com)
–  a way to specify what information to find, and where

•  HTTP (hypertext transfer protocol)
–  a way to request specific information from a server and get it back

•  HTML (hyptertext markup language)
–  a language for describing information for display

•  browser (Firefox, Safari, Internet Explorer, Opera, Chrome, …)
–  a program for making requests, and displaying results

•  embellishments
–  pictures, sounds, movies, ...
–  loadable software

•  the set of everything this provides

Web history

•  1989: Tim Berners-Lee at CERN
–  a way to make physics literature and
 research results accessible on the Internet

•  1991: first software distributions

•  Feb 1993: Mosaic browser
–  Marc Andreessen at NCSA (Univ of Illinois)

•  Mar 1994: Netscape
–  first commercial browser

•  technical evolution managed by World Wide Web Consortium
–  non-profit organization at MIT, Berners-Lee is director
–  official definition of HTML and other web specifications
–  see www.w3.org

HTTP: Hypertext transfer protocol

•  What happens when you click on a URL?
•  client opens TCP/IP connection to host, sends request

 GET /filename HTTP/1.0

•  server returns
–  header info
–  HTML

•  since server returns the text, it can be created as needed
–  can contain encoded material of many different types (MIME)

•  URL format
 service://hostname/filename?other_stuff

•  filename?other_stuff part can encode
–  data values from client (forms)
–  request to run a program on server (cgi-bin)
–  anything else

GET url

HTML
client server

Embellishments

•  original design of HTTP just returns text to be displayed
•  now includes pictures, sound, video, ...

–  need helpers or plug-ins to display non-text content
 e.g., GIF, JPEG graphics; sound; movies

•  forms filled in by user
–  need a program on the server to interpret the information (cgi-bin)

•  HTTP is stateless
–  server doesn't remember anything from one request to next
–  need a way to remember information on the client: cookies

•  active content: download code to run on the client
–  Javascript and other interpreters
–  Java applets
–  plug-ins
–  ActiveX

Forms and CGI programs

•  "common gateway interface"
–  standard way to request the server to run a program
–  using information provided by the client via a form

•  if the target file on server is an executable program
•  and it has the right properties and permissions

–  e.g., in /cgi-bin directory and executable
•  then run it on server to produce HTML to send back to client

–  using the contents of the form as input
–  output depends on client request: created on the fly, not just a file

•  CGI programs can be written in any programming language
–  often Perl, PHP, Java

Example form in HTML
<html>
<body>
<form METHOD=POST enctype="multipart/form-data"

ACTION="echo.cgi">

Background color:
<input type="text" name="Background" size="40">
<p>
<input type="radio" name=Color value="Red" checked> Red

<input type="radio" name=Color value="Blue"> Blue

<input type="radio" name=Color value="Green"> Green

<input type="radio" name=Color value="Yellow"> Yellow

<p>
<input type="submit" value="Send">

</form>
</body>
</html>

Example CGI program in Perl (echo.cgi) [ignore details!]

#!/usr/princeton/bin/perl -Tw
use CGI;
$query = new CGI;

$c = $query->param('Color');
$bg = $query->param('Background');
if ($bg eq '') { $bg = 'ffffff'; }

print $query->header;
print $query->start_html(-title=>'test', -bgcolor=>$bg);
print "<h1> this is a test...\n";

print "<P> bg = $bg\n";
foreach $name ($query->param) {
 $value = $query->param($name);
 print "<P> $name is $value\n";
}
print $query->end_html();

Cookies

•  HTTP is stateless: doesn't remember from one request to next
•  cookies intended to deal with stateless nature of HTTP

–  remember preferences, manage "shopping cart", etc.
•  cookie: one line of text sent by server to be stored on client

–  stored in browser while it is running (transient)
–  stored in client file system when browser terminates (persistent)

•  when client reconnects to same domain,
 browser sends the cookie back to the server

–  sent back verbatim; nothing added
–  sent back only to the same domain that sent it originally
–  contains no information that didn't originate with the server

•  in principle, pretty benign
•  but heavily used to monitor browsing habits, for commercial

purposes

Plugins, Add-ons, etc.

•  programs that extend browser, mailer, etc.
–  browser provides API, protocol for data exchange
–  extension focuses on specific application area
–  e.g., documents, pictures, sound, movies, scripting language, ...
–  may exist standalone as well as in plugin form
–  Acrobat, Flash, Quicktime, RealPlayer, Windows Media Player, ...

•  scripting languages interpret downloaded programs
–  Javascript
–  Java

compiled into instructions for a virtual machine
 (like toy machine on steroids)

instructions are interpreted by virtual machine in browser

Active X (Microsoft)

•  write programs in any language (C, C++, Visual Basic, ...)
•  compile into machine instructions for PC
•  when a web page that uses an ActiveX object is accessed

–  browser downloads compiled native machine instructions
–  checks that they are properly signed ("authenticated") by creator
–  runs them

•  each ActiveX object comes with digital certificate from supplier
–  can't be forged
–  run the program if you trust the supplier

•  more efficient than an interpreter
•  no restrictions on what an ActiveX object can do

–  no assurance that it works properly!

•  the most risky of the active-content models

Potential security & privacy problems

•  attacks against client
–  release of client information

cookies: client remembers info for subsequent visits to same server
–  adware, phishing, spyware, viruses, ...

spyware: client sends info to server upon connection (Sony, …)
often from unwise downloading

–  buggy/misconfigured browsers, etc., permit vandalism, theft, hijacking, ...
•  attacks against server

–  client asks server to run a programs when using cgi-bin
server-side programming has to be careful

–  buggy code on server permits break-in, theft, vandalism, hijacking, …
–  denial of service attacks

•  attacks against information in transit
–  eavesdropping

encryption helps
–  masquerading

needs authentication in both directions

client server net

Privacy on the Web

•  what does a browser send with a Web request?
–  IP address, browser type, operating system type
–  referrer (URL of the page you were on)
–  cookies

•  what do "they" know about you?
–  whatever you tell them, implicitly or explicitly
–  especially Facebook!
–  public records are really public
–  lots of big databases like phone books
–  universal numbers make it easier to track you (SSN, telephone, Ethernet)
–  log files everywhere
–  aggregators collect a lot of information for advertising
–  spyware, key loggers and similar tools collect for nefarious purposes

•  who owns your information?
–  in the USA, they do

Viruses

•  old threat, new technologies
–  new connectivity makes them more dangerous

•  basic problem: running someone else's software on your machine
–  bugs and ill-advised features make it easier

•  operates by hiding executable code inside something benign
–  e.g., .EXE file or script in mail or document, downloaded content

•  Melissa, ILoveYou, Anna Kournikova viruses use Visual Basic
–  applications (Word, Excel, Powerpoint, Outlook) have VB interpreter
–  a document like a .doc file or email message can contain a VB program
–  opening the document causes the VB program to be run

•  virus detectors
–  scan for suspicious patterns, suspicious activities, changes in files

Defenses

•  use strong passwords
•  popups off, cookies off, spam filter on
•  turn off previewers and HTML mail readers
•  anti-virus software on and up to date

–  turn on macro virus protection in Word, etc.; turn off ActiveX
•  run spyware detectors
•  use a firewall
•  try less-often targeted software

–  Mac OS X, Linux, Firefox, Thunderbird, ...
•  be careful and suspicious all the time

–  don't view attachments from strangers
–  don't view unexpected attachments from friends
–  don't just read/accept/click/install when requested
–  don't install file-sharing programs
–  be wary when downloading any software

firewall
machine internal net external net

