What's in a computer?

- **logical or functional organization: "architecture"**
 - what the pieces are, what they do, how they work
 - how they are connected, how they work together
 - what their properties are

- **physical structure**
 - what they look like, how they are made

- **major pieces**
 - processor ("central processing unit" or CPU)
 - does the work, controls the rest
 - memory (RAM = random access memory)
 - stores instructions and data while computer is running
 - disks ("secondary storage")
 - stores everything even when computer is turned off
 - other devices ("peripherals")

Block diagram of typical laptop/desktop

```
CPU (processor)

Memory (RAM)
Hard disk
CD/DVD
network/wireless

mouse
keyboard
display

Bus
(and many others)
```
CPU

- can perform a small set of basic operations ("instructions")
 - arithmetic: add, subtract, multiply, divide, ...
 - memory access:
 - fetch information from memory, store results back into memory
 - decision making: compare numbers, letters, ...
 - decide what to do next depending on result of previous computations
 - control the rest of the machine
 - tell memory to send data to display; tell disk to read data from network; ...

- operates by performing sequences of simple operations very fast

- instructions to be performed are stored in the same memory as the data is
 - instructions are encoded as numbers: e.g., Add = 1, Subtract = 2, ...

- CPU is a general-purpose device: putting different instructions into the memory makes it do a different task
 - this is what happens when you run different programs

How fast is fast?

- CPU uses an internal "clock" (like a heartbeat) to step through instructions

- 900 MHz, 2.3 GHz, etc., is the number of clock ticks per second
 - 1 Hertz = 1 tick per second; abbreviated 1 Hz
 - mega = million
 - giga = billion
 - 1 MHz = 1 megaHertz = 1 million ticks per second
 - 1 GHz = 1 gigahertz = 1 billion ticks per second = 1000 MHz

- one instruction (like adding two numbers) might take one, two or several ticks, depending on design of the CPU
 - might even complete more than one instruction in one tick

- very rough approximations:
 - PC/Mac processors execute about 2 billion instructions/sec
 - cellphone processors execute about 1 billion instructions/sec
Memory (Random Access Memory = "RAM")

- a place to store information while the computer is running
 - the programs that are running
 - their data
 - the operating system (Windows, Mac OS X, Unix/Linux, ...)
- volatile: forgets everything when power is turned off
- limited (though large) capacity
- logically, a set of numbered boxes ("pigeonholes"? mailboxes?)
 - each capable of storing one byte = 8 bits of information
 - a small number or a single character like A or part of a larger value
 - random access
 - CPU can access any location as quickly as any other location

What's a bit? What's a byte?

- a bit is the smallest unit of information
- represents one 2-way decision or a choice out of two possibilities
 - yes / no, true / false, on / off, M / F, ...
- abstraction of all of these is represented as 0 or 1
 - enough to tell which of TWO possibilities has been chosen
 - a single digit with one of two values
 - hence "binary digit"
 - hence bit
- binary is used in computers because it's easy to make fast, reliable, small devices that have only two states
 - high voltage/low voltage, current flowing/not flowing (chips)
 - electrical charge present/not present (Flash)
 - magnetized this way or that (disks)
 - light bounces off/doesn't bounce off (cd-rom, dvd)
- all information in a computer is stored and processed as bits
- a byte is 8 bits that are treated as a unit
Disks

- a place to store information when the power is turned off
- usually based on magnetic surfaces, rotating machinery
- logical / functional structure: folders (directories) and files
 - your information: papers, mail, music, web page, ...
 - programs and their data: Firefox, Word, iTunes, ...
 - operating system(s): Windows, MacOS, Unix, Linux, PalmOS, ...
 - bookkeeping info: where things are physically

Other views of a disk: Window, Unix

bash-3.00$ ls -ltr | tail -8
-rw-r--r-- 1 bwk fac 3233 Sep 19 08:10 survey.html
-rw-r--r-- 1 bwk fac 6034432 Sep 20 10:43 01intro.ppt
-rw-r--r-- 1 bwk fac 6870 Sep 20 10:54 psl.html
-rw-r--r-- 1 bwk fac 2603 Sep 21 08:09 rita.09
-rw-r--r-- 1 bwk fac 7101 Sep 21 09:49 ideas.09
-rw-r--r-- 1 bwk fac 21756 Sep 21 13:55 index.html
-rw-r--r-- 1 bwk fac 143872 Sep 22 15:35 grades09.xls
-rw-r--r-- 1 bwk fac 3151 Sep 22 15:44 surveyresults.html
Other things

- **CD-ROM, CD-R, CD-RW; DVD**
 - read-only, recordable, rewritable, ~ 650 MB capacity
 - same format as audio CD but spins much faster
 - DVD: typically 4.7 or 8.4 GB

- **modem**
 - converts info to/from sound for sending by telephone
 - 56 kilobits per second (56 Kbps): ~ 5000 characters/second

- **network interface**
 - connects computer to network, usually Ethernet (as in Dormnet)
 - Ethernet transfers data at 10-1000 megabits per second
 - (10 Mbps ~ 1 MB/sec)
 - wireless is compatible with Ethernet ("wireless Ethernet")
 - 802.11b (11 Mbps), 802.11g (55 Mbps), 802.11n (600 Mbps) [max]
 - DSL and cable modems are Ethernet-compatible
 - slower than Ethernet (typically 0.5 - 4 Mbps); usually at home
 - fiber (e.g., Verizon FiOS) might be 10 Mbps down, 2 Mbps up

- **gadgets ("peripherals") on the bus, especially USB**
 - USB 2.0 is 480 Mbps (max)

Functional design is not physical implementation

- **block diagram is "architectural" or "functional" or "logical" design**
 - gives components, shows how they are connected, maybe what they do

- **physical construction is how it's built**
 - usually many different ways to build same functional or logical design
 - will all behave more or less the same (same functions)

- **important general rule: the logical / functional organization does not describe a physical implementation**
 - logical abstracts away irrelevant physical details
Levels of abstraction

- View of a complex item or system at sufficient detail for a particular purpose, but with no unnecessary details
- Higher level of abstraction means less detail
- Computer science uses abstraction a lot to manage complexity
 - User level: files, folders, applications, display, peripherals, ...
 - Software level: operating system, memory, ...
 - Architectural level
 - Hardware level
 - Components, wires, clock, power
 - Physical level
 - Electric circuits, current, voltage, heat, ...

Motherboard (~1998)
Backplane (~1998)

Some CPU chips
Wrapup on components

- the logical or functional components of computer hardware
- how they fit together, what the numbers measure

- some neat Greek/Latin/... prefixes:
 - (femto, pico), nano, micro, milli, kilo, mega, giga, (tera, peta, exa)

- what the basic physical pieces look like

- one logical organization can have different physical forms
- logical organization hasn't changed much in 60+ years
- physical form has changed rapidly for the entire time
 - many tradeoffs among physical forms (size, weight, power, ...)

2.5" laptop disk