What's in a computer?

- logical or functional organization: "architecture"
 - what the pieces are, what they do, how they work
 - how they are connected, how they work together
 - what their properties are

• physical structure

- what they look like, how they are made
- major pieces
 - processor ("central processing unit" or CPU) does the work, controls the rest
 - memory (RAM = random access memory) stores instructions and data while computer is running
 - disks ("secondary storage")
 stores everything even when computer is turned off
 - other devices ("peripherals")

Block diagram of typical laptop/desktop

CPU

can perform a small set of basic operations ("instructions")

- arithmetic: add, subtract, multiply, divide, ...
- memory access:
 - fetch information from memory, store results back into memory
- decision making: compare numbers, letters, ...
 decide what to do next depending on result of previous computations
- control the rest of the machine
 tell memory to send data to display; tell disk to read data from network; ...
- operates by performing sequences of simple operations <u>very</u> fast
- $\boldsymbol{\cdot}$ instructions to be performed are stored in the same memory as the data is
 - instructions are encoded as numbers: e,g., Add = 1, Subtract = 2, ...
- CPU is a general-purpose device: putting different instructions into the memory makes it do a different task
 - this is what happens when you run different programs

How fast is fast?

- CPU uses an internal "clock" (like a heartbeat) to step through instructions
- 900 MHz, 2.3 GHz, etc., is the number of clock ticks per second
 - 1 Hertz = 1 tick per second; abbreviated 1 Hz
 - mega = million
 - giga = billion
 - 1 MHz = 1 megaHertz = 1 million ticks per second
 - 1 GHz = 1 gigaHertz = 1 billion ticks per second = 1000 MHz
- one instruction (like adding two numbers) might take one, two or several ticks, depending on design of the CPU
 - might even complete more than one instruction in one tick
- very rough approximations:
 - PC/Mac processors execute about 2 billion instructions/sec
 - cellphone processors execute about 1 billion instructions/sec

Memory (Random Access Memory = "RAM")

- a place to store information while the computer is running
 - the programs that are running
 - their data
 - the operating system (Windows, Mac OS X, Unix/Linux, ...)
- volatile: forgets everything when power is turned off
- limited (though large) capacity
- logically, a set of numbered boxes ("pigeonholes"? mailboxes?)
 - each capable of storing one byte = 8 bits of information
 a small number or a single character like A or part of a larger value
 - random access
 CPU can access any location as quickly as any other location

What's a bit? What's a byte?

- a bit is the smallest unit of information
- represents one 2-way decision or a choice out of two possibilities
 yes / no, true / false, on / off, M / F, ...
- \cdot abstraction of all of these is represented as 0 or 1
 - enough to tell which of TWO possibilities has been chosen
 - a single digit with one of two values
 - hence "binary digit"
 - hence bit
- binary is used in computers because it's easy to make fast, reliable, small devices that have only two states
 - high voltage/low voltage, current flowing/not flowing (chips)
 - electrical charge present/not present (Flash)
 - magnetized this way or that (disks)
 - light bounces off/doesn't bounce off (cd-rom, dvd)
- all information in a computer is stored and processed as bits
- a byte is 8 bits that are treated as a unit

Disks

- a place to store information when the power is turned off
- usually based on magnetic surfaces, rotating machinery
- logical / functional structure: folders (directories) and files
 - your information: papers, mail, music, web page, ...
 - programs and their data: Firefox, Word, iTunes, ...
 - operating system(s): Windows, MacOS, Unix, Linux, PalmOS, ...
 - bookkeeping info: where things are physically

000 p2p.py	4 KB				
Modified: Mar 15,	2006 8:47 PM				
000		Applications			
	□ \$ -		Q,		_
Network	Name	Date Modified	Size	Kind A	
Network	Stickies.app	September 11, 2006, 7:07 AM		Application	
Untitled	System Preferences.app	September 11, 2006, 7:07 AM		Application	
	TextEdit.app	March 20, 2005, 10:10 PM		Application	
-	AppleScript	September 11, 2006, 7:07 AM		Folder	
Desktop	w 📁 Microsoft Office X	Yesterday, 3:43 PM		Folder	
the buck	Microsoft Excel	October 19, 2001, 3:00 AM	11.9 MB	Application	
UWK UWK	Microsoft PowerPoint	October 19, 2001, 3:00 AM	6.2 MB	Application	
Applications	🔛 Microsoft Word	October 19, 2001, 3:00 AM	12.6 MB	Application	
- A subbuctutions	Welcome	October 19, 2001, 3:00 AM	7.6 MB	Application	
Documents	E Clipart	September 2106, 11:03 AM		Folder	
	Office	September 2106, 11:04 AM		Folder	
Movies	Read Me	September 2106, 11:04 AM		Folder	
2	Shared Applications	Yesterday, 3:43 PM		Folder	
Music	T Proofing Tools	September 2106, 11:04 AM		Folder	
	English Forms	October 19, 2001, 3:00 AM	440 KB	Microsoftd settings	
Pictures	Aus Enictionary	October 19, 2001, 3:00 AM	208 KB	Unix Executable File	
	Australictionary	October 19, 2001, 3:00 AM	568 KB	Unix Executable File	
	English Grammar	October 19, 2001, 3:00 AM	1.3 MB	Unix Executable File	
	Englishtionary	October 19. 2001. 3:00 AM	3.9 MB	Unix Executable File	_

Other views of a disk: Window, Unix

	avorites T				12					
Þ Back 🔹 🄿 👻 🔁	Q Searc	h 🔁	Folders	s 🎯 😤 9	\mathbb{X}	20	•			
Address 🗋 Z:\cos109										
Folders		×	Name	Δ			Size	Туре	Modified	
😑 🔂 cos109		-	🗋 VB					File Folder	9/25/2005 1:4	8 PM
± 🗋 00			👰 01 ir	ntro.ppt		5,22	24 KB	Microsoft PowerPoi	9/7/2007 3:36	PM
🕀 🧰 01			🎱 02ir	nside.ppt		1,19	93 KB	Microsoft PowerPoi	9/7/2007 4:29	PM
12 🗋 102			콑 06la	abs.tar.gz		6,98	81 KB	WinZip File	9/2/2007 5:22	PM
🕀 🛄 03			asc	ii.gif		1	1 KB	GIF Image	9/21/2000 9:1	3 PM
🕀 🧰 04			asc				9 KB	GIF Image	10/10/2004 5:	
😟 🛄 05			asc				53 KB	JPEG Image	10/10/2004 5:	
🕀 🛄 06			asc	ii2.gif			6 KB	GIF Image	9/21/2000 9:2	3 PM
bash-3. -rw-r	r 1	bwk	fac	3283	-			0 survey.html		
-rw-r					-			3 Olintro.ppt	;	
-rw-r	r 1	bwk	fac		-			4 psl.html		
-rw-r	r 1	bwk	fac	2803	Sep	21 0	08:0	9 rita.09		
-rw-r	r 1	bwk	fac	7101	Sep	21 0	9:4	9 ideas.09		
-rw-r	r 1	bwk	fac	21766	Sep	21 J	L3:5	5 index.html		
-rw-r	r 1	bwk	fac	143872	Sep	22 J	15:3	5 grades09.xl	.3	

Other things

- · CD-ROM, CD-R, CD-RW; DVD
 - read-only, recordable, rewritable, ~ 650 MB capacity same format as audio CD but spins much faster
 - DVD: typically 4.7 or 8.4 GB
- modem
 - converts info to/from sound for sending by telephone
 - 56 kilo<u>bits</u> per second (56 Kbps): ~ 5000 characters/second
- network interface
 - connects computer to network, usually Ethernet (as in Dormnet)
 - Ethernet transfers data at 10-1000 megabits per second (10 Mbps ~ 1 MB/sec)
 - wireless is compatible with Ethernet ("wireless Ethernet")
 802.11b (11 Mbps), 802.11g (55 Mbps), 802.11n (600 Mbps) [max]
 - DSL and cable modems are Ethernet-compatible slower than Ethernet (typically 0.5 - 4 Mbps); usually at home
 - fiber (e.g., Verizon FiOS) might be 10 Mbps down, 2 Mbps up
- gadgets ("peripherals") on the bus, especially USB USB 2.0 is 480 Mbps (max)

Functional design is not physical implementation

- block diagram is "architectural" or "functional" or "logical" design
 - gives components, shows how they are connected, maybe what they do
- physical construction is how it's built
 - usually many different ways to build same functional or logical design
 - will all behave more or less the same (same functions)
- important general rule: the logical / functional organization does not describe a physical implementation
 - logical abstracts away irrelevant physical details

Levels of abstraction

- view of a complex item or system at sufficient detail for a particular purpose, but with no unnecessary details
- higher level of abstraction means less detail
- computer science uses abstraction a lot to manage complexity
 - user level: files, folders, applications, display, peripherals, ...
 - software level: operating system, memory, ...
 - architectural level
 - hardware level components, wires, clock, power
 - physical level electric circuits, current, voltage, heat, ...

Wrapup on components

- the logical or functional components of computer hardware
- how they fit together, what the numbers measure
- some neat Greek/Latin/... prefixes:
 (femto, pico), nano, micro, milli, kilo, mega, giga, (tera, peta, exa)
- what the basic physical pieces look like
- one logical organization can have different physical forms
- logical organization hasn't changed much in 60+ years
- physical form has changed rapidly for the entire time
 - many tradeoffs among physical forms (size, weight, power, ...)